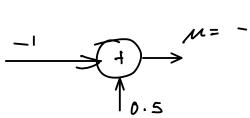
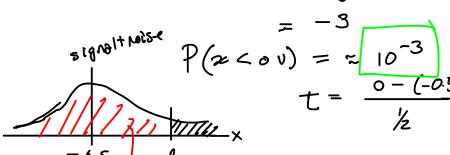

Exercise 1: Gaussian noise with a mean of $0.5\,\mathrm{V}$ and a variance of $0.25\,\mathrm{V}^2$ is added to a bipolar signal with levels of $\pm 1\,\mathrm{V}$. Assuming a decision threshold equally spaced between the two levels, what is the likelihoood of error if +1 is transmitted? If -1 is transmitted? What is the average error rate if +1 is transmitted 25% of the time?





$$P(ewr) = P(x>0)$$

= $|-P(x<0)|$
= $|-0.84 = 0.16$

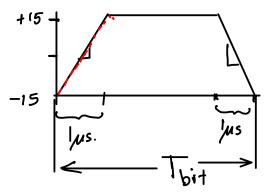
Exercise 2: What is the current flowing into a 1nF capacitor if

Q= CV

it is being charged at a rate of 10V/
$$\mu$$
s?

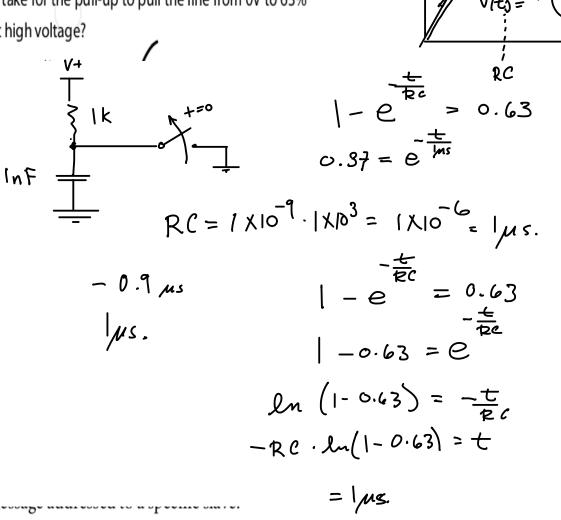
$$i = \frac{charge}{second}$$

$$i = \frac{charge}{second}$$

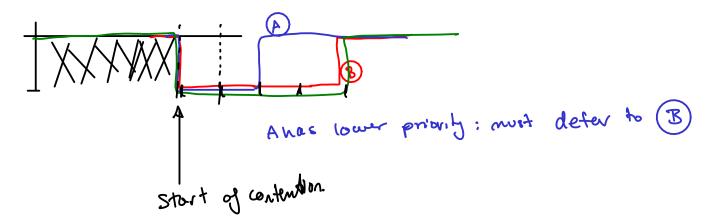

$$i = \frac{charge}{second}$$

$$\frac{Q}{T} = C \frac{V}{T}$$

$$= 1 \times 10^{-9} (nF) \cdot \frac{10}{1 \times 10^{-6}} (\frac{V}{Ms})$$


$$= 10^{-3} \cdot 10 = 10 \text{ mA}$$

Exercise 3: The RS-232 standard specifies a maximum slew rate of $30V/\mu s$. Assuming a voltage swing of 30 volts, what is the maximum data rate for which two signal level transitions occupy 10% of the bit period?



$$|0\%| T_{bi} + = 2 \mu s$$
.
 $|T_{bi}| + = \frac{2}{0.1} \mu s = 20 \mu s$.
 $|f_{bi}| + \frac{2}{0.1} \mu s = 20 \mu s$.

Exercise 4: If the capacitance of the transmission line joining several OC drivers is 1 nF and the pull-up resistor is 1 k Ω , how long will it take for the pull-up to pull the line from 0V to 63% of the logic high voltage?

Exercise 5: What are the consequences of increasing the delay between polls? What other factor might determine the maximum delay before slave gets access to the bus in a system using polling?

Exercise 6: Consider a communication bus in a car that connects an airbag activation controller with a collision detector, a passenger-seat occupancy sensor and an airbag-disabling switch. Would it be more appropriate to use a polling- or contention-based bus arbitration protocol? Would it be appropriate for the arbitration protocol to allow different priorities for bus access? If so, what priorities might be assigned the different sensors?

-for minimum latency
use a contention protocol

- provittes would be good

- highest to collision sensor.