
ELEX 3525 : Data Communications
2016Winter Term

Data Transmissionover BandlimitedChannels

In many cases the channel bandwidth limits the maximum symbol rate or data rate. is lecture describes two ways we can
estimate the maximum symbol or data rate that can be transmitted over a band-limited channel.
Aer this lecture you should be able to: determine if a channel meets the Nyquist no-ISI criteria and, if so, the maximum
signalling rate without ISI; determine the maximum error-free information rate over an AWGN channel; determine the
specific conditions under which these two limits apply. You should be able to perform computations involving the OFDM
symbol rate, sampling rate, block size and guard interval.

Introduction

All practical channels are band-limited (either
low-pass or band-pass) and the channel bandwidth
limits the maximum data rate. We will study two
theorems, the Nyquist no-ISI criteria and Shannon’s
capacity theorem, that provide some guidance about
maximum data rates that can be achieved over a
bandlimited channel.

Inter-Symbol Interference

Bandwidth-limited low-pass channels attenuate
higher-frequency components of a signal. is
“rounds off” pulse shapes which increases their rise
and fall times and extends their durations. Each
symbol then extends into subsequently-transmitted
symbols. is causes one symbol to interfere with
subsequently-transmitted symbols. is interference
is called inter-symbol interference (ISI).
Exercise 1: Draw a square pulse of duration T. Draw the

pulse after it has passed through a linear low-pass channel

that results in rise and fall times of T/. Draw the output for

an input pulse of the opposite polarity. Use the principle of

superposition to draw the output of the channel for a positive

input pulse followedby a negative input pulse.

Nyquist no-ISI Criteria in Time

Consider a system that transmits symbols as
(infinitely-)short pulses of different amplitudes.
ese are called “impulses.” A low-pass channel will
limit the rise time of the impulses and cause them to
be “smeared” in time. However, if the response of
the channel to these impulses is zero at multiples of
the symbol period then one impulse will not cause

ISI to subsequent impulses if we sample at these
zero-crossing times. is is called the Nyquist no-ISI
criteria.

Exercise 2: What is the impulse response of a channel that

does not alter its input? Does this impulse response meet the

Nyquist condition? Will it result in ISI?

An example of an impulse response that meet this
criteria is the sinc() function:

h(t) =
sin(πt/T)

πt/T

which has value 1 at t =  and 0 at multiples ofT.
Exercise 3: Draw the impulse response of a channel that

meets theNyquist condition but is composed of straight lines.

Nyquist no-ISI Criteria in Frequency

It is possible to derive the characteristics of the
channel’s frequency-domain transfer function that
result in no ISI. One way of stating this condition
is that the channel’s frequency response have odd
symmetry around half of the symbol frequency:

H(

T

+ f) + H(

T

− f) =  for  < |f| < 
T
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Note that this condition applies to the complex
frequency response. usboth the real and imaginary
parts ofH(f) need to have this symmetry1.

Oen we have little control over the impulse
response or transfer function of the channel and we
need to add filtering at the transmit or receive sides of
the channel so that the overall transfer functionmeets
the Nyquist criteria.

Just as there could be many impulse responses that
are zero at multiples of the symbol period, there are
many no-ISI transfer functions. For example, the
following two straight-line transfer functions meet
the no-ISI condition2:

e “brick-wall” filter (blue) has a response that
is 1 below half of the symbol rate (  × 

T = 
T


T is

the symbol rate) and zero above that. Although such
a filter would have the minimum overall bandwidth
required for a symbol period T, it is not physically
realizable and has other problems as described below.
e filter with the straight-line transfer function
is more practical but still difficult to implement.
A more practical transfer function is the so-called
raised-cosine functionwhich is a half-cycle of a cosine
function offset to have a minimum value of zero and
centered around half of the symbol rate:

Note that it is the symmetry around the frequency
/T that ensures there will be no ISI rather than the

1While we oen only show the magnitude of the frequency
response, the phase response is usually linear and this can be used
to determine the ratio of real to imaginary components.

2For simplicity we only show one component (the real or
imaginary portion) of the transfer function.

exact filter shape. uswe are free to implement other
transfer functions, possibly arbitrary ones, if they
make the implementation easier.
Exercise 4: Draw the magnitude of a raised-cosine transfer

function that would allow transmission of impulses at a rate of

800 kHzwith no interference between the impulses.

Pulse-ShapingFilter

Note that the no-ISI criteria applies for a channel that
produces no ISI for impulses, not for the square pulses
typically used by line codes. Since practical systems
don’t transmit impulses, the Nyquist criteria cannot
be used to evaluate the channel.

Instead, we can pretend that the transmitter in-
cludes a filter that converts input impulses to pulses.
We then consider that the overall channel includes
this (im)pulse-shaping filter. So for transmitters
that generate pulses it is the combination of this
hypothetical impulse-shaping filter and the channel
that has tomeet the Nyquist criteria.
Exercise5: Draw the impulse responseof afilter thanconverts

input impulses to pulses of duration T? What is the shape of

the frequency response of this filter? Hint: theFourier transform

of a pulse of duration T is sin(πfT)
πf . What is the “bandwidth” of

this filter – when is it first zero? How does this compare to the

“bandwidth” of the raised-cosine filter above?

Excess Bandwidth

Channels can have different transitions between the
passband and the stopband of the transfer function
while still meeting the no-ISI conditions.

A parameter, α, which defines how much wider
the channel is than the minimum is called the “excess
bandwidth” parameter. It is defined as:

α =
total bandwidth

minimumpossible bandwidth
− 

Exercise 6: What is the possible range of values of α?
Why would we make the bandwidth larger than

necessary? e value of α has an impact on the
shape of the impulse response and this in turn affects
the sensitivity of the receiver to errors in when the
receiver samples the received signal.
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e following diagram shows how α for a raised-
cosine transfer function affects the impulse response:

Larger values of excess bandwidth (wider band-
width channels) results in less “ringing”of the impulse
response which in turn reduces the amount of ISI
near the sampling point. is makes the receiver less
sensitive to errors in where (when) it samples the
received signal.

Equalization

To avoid ISI, the total channel response including the
pulse-shaping filters, transmit filters, the channel and
the receiver filter(s) have to meet the Nyquist no-ISI
condition.

When the channel by itself doesn’t meet the no-ISI
conditions, the transmitter and/or receiver can use
a filter called an equalizer that modify the overall
transfer functiontoensure theno-ISIcondition ismet.

Transmitter and receiver filters typically have other
functions beside equalization. For example, the
transmit filter may limit the bandwidth of the trans-
mitted signal to limit interference to users on adjacent
channels. e receiver filter may filter out noise and
interference fromadjacent channels and thus improve
theSNRandSIR.ecommunicationsystemdesigner
would design the transmitter and receiver filters to
meetboth thefilteringandequalization requirements.

Acommonsituation is aflat channelwhere interfer-
ence is not an issue. In this case a reasonable approach
is to put half of the filtering at the transmitter and half
at the receiver. In order to achieve an overall raised
cosine transfer function, each side has to use a “root
raised cosine” (RRC) transfer function. e product
of the two filters is thus the desired raised-cosine
function whichmeets the no-ISI condition.

Adaptive Equalizers

In many communication systems the transfer func-
tion of the channel cannot be predicted ahead of
time. One example is a modem used over the public
switched telephone network (PSTN). Each phone call
will result in a channel that includes different “loops”
and thus different frequency responses. Another
example is multipath propagation in wireless net-
works. e channel impulse response changes as the
receiver, transmitter or objects in the environment
move around.

To compensate for the time-varying channel im-
pulse response the receiver can be designed to adjust
the receiver equalizer filter response using various
algorithms.

Nyquist Criteria andBit Rate

Note e symbol rate limitations defined by the
Nyquist criteria do not determine the maximum bit
rate that can be achieved over a channel – they only
determine themaximum symbol ratewithout ISI.

We can increase the bit rate by increasing the num-
ber of bits per symbol (e.g. by using multiple levels).
For example, by symbols each of which could be at
one of 1024 levels we can transmit 10 bits per symbol.

We can also design receivers that recover the trans-
mitted data even in the presence of ISI. For example, if
we know the data that was transmitted previously and
we know the channel impulse response then we can
predict the ISI and subtract it from the received signal.

OFDM

Analternative to equalization is a techniquecalledOr-
thogonal Frequency Division Multiplexing (OFDM).
An OFDM transmitter groups N symbols and uses
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them to modulate N “subcarriers” (modulation is
covered in another course). ese subcarriers are
transmitted in parallel over the same time duration
that would have been required to transmit theN sym-
bols serially. enet effect is to reduce the symbol rate
by a factorNwith no impact on the overall bit rate.

We usually insert a “guard time” (or “guard in-
terval”) in-between symbols that is longer than the
duration of the channel impulse response. Typically
this will be several times the symbol duration that
would have been used without OFDM.

Since no data is transmitted during the guard time,
this reduces the average data rate. However, the guard
time is typically a small fraction of theOFDM symbol
duration and so the impact is relatively small.

Rather than transmitting nothing during the guard
interval, a small part of the end of the block of N
samples are copied to the start of the symbol and
transmitted during the guard time. is is called a
“cyclic” or “periodic” extension.

e value of N is typically a power of 2 to allow
efficient implementation using the Fast Fourier
Transform (FFT) algorithm.

OFDM has become more popular than adaptive
equalization because it is simpler to implement and
more robust. is is partly because it is not necessary
to estimate the channel to correct for ISI. OFDM is
used by most modern ADSL, WLAN and 4G cellular
standards.

Exercise 7: The 802.11g WLAN standard uses OFDM with a

sampling rate of 20 MHz, with N =  and guard interval of

.μs. What is the total durationof eachOFDMblock, including

the guard interval? Howmany guard samples are used?

ShannonCapacity

eShannonCapacity of a channel is the information
rate above which it is not possible to transmit data
with an arbitrarily low error rate.

Different types of channels will have different
capacities. For the Additive White Gaussian Noise
(AWGN) channel the capacity is:

C = B log

(
 +

S
N

)
where C is the capacity (b/s), B is the bandwidth (Hz)
and S

N is the signal to noise (power) ratio.
eShannon limit does not say that you can’t trans-

mit data faster than this limit, only that if you do, you
can’t reduce the error rate to an arbitrarily low value.
However, in practice, attempting to transmit at infor-
mation rates above capacity results in high error rates.
Exercise 8: Can we use compression to transmit data faster

than the Shannon capacity? Explain.

Shannon’s work also does not specify how to
achieve capacity. However, Shannon’s work does
hint that using error-correcting codes with long
codewords (to be discussed later) should allow us
to achieve arbitrarily-low error rates as long as we
information rate to less than the channel capacity.
Exercise 9: What is the channel capacity of a 4 kHz channel

with an SNR of 30dB?

Some systems using modern forward error-
correcting (FEC) codes such as Low Density Parity
Check (LDPC) codes can communicate at very low
error rates over AWGN channels with SNRs only a
fraction of a dB more than the minimum required by
the capacity theorem.
Exercise 10: What are some differences between the sig-

nalling rate limit imposed by theNyquist no-ISI criteria and the

Shannon Capacity Theorem? For example, what do they limit

andwhat parameters determine these limits?
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