Lecture 9 - Polynomials in GF(2) and CRCs

Exercise 1: Write the addition and multiplication tables for $G F(2)$. What logic function can be used to implement modulo2 addition? Modulo-2 multiplication?

Exercise 2: What are the possible values of the results if we used values 0 and 1 but the regular definitions of addition and multiplication? Would this be a field?
as above, but 1+1=2
this is not a field because addition is not closed (the results are not values in the field)

Exercise 3: What is the polynomial representation of the codeword 01101?

$$
\begin{aligned}
& 0 x^{4}+1 x^{3}+1 x^{2}+0 x^{1}+1 x^{0} \\
& x^{3}+x^{2}+1
\end{aligned}
$$

Exercise 4: What is the result of multiplying $x^{2}+1$ by $x^{3}+x$ if the coefficients are regular integers? If the coefficients are values in $G F(2)$? Which result can be represented as a bit sequince?

$$
1 x^{2}+0 x+1 x^{0}
$$

$$
G(x)=1 x^{3}+0 x^{2}+1 x+1 x 0
$$

Exercise 5: If the generator polynomial is $G(x)=x^{3}+x+1$ and the data to be protected is 1001, what are $n-k, M(x)$ and the CRC? Check your result. Invert the last bit of the CRC and compute the remainder again.
$n-k=3$ (I leas than number of bits in $G(x)$) order of remainder io less thin order of $G(x)$ order $C R C$ is $\underbrace{x^{2}+x^{\prime}+\ldots x^{0}}_{C R C}$

$$
\begin{aligned}
& m(x)=\underset{\text { date }}{100} \underset{C P C}{\underset{\sim}{\sim} 0^{C R C}} \\
& \frac{m(x)}{G(x)}=\frac{1 x^{6}+0 x^{5}+0 x^{4}+1 x^{3}+0 x^{2}+0 x+0 x^{0}}{1 x^{3}+0 x^{2}+1 x+1 x^{0}} \\
& 1 x^{3}+0 x^{2}+1 x+1 \\
& 1 x ^ { 3 } + 0 x ^ { 2 } + 1 x + 1 x ^ { 0 } \longdiv { 1 x ^ { 6 } + 0 x ^ { 5 } + 0 x ^ { 4 } + 1 x ^ { 3 } + 0 x ^ { 2 } + 0 x + 0 x ^ { 0 } } \begin{array} { l }
{ 6 } \\
{ x ^ { 6 } + 0 x ^ { 5 } + 1 x ^ { 4 } + 1 x ^ { 3 } }
\end{array} \\
& \frac{1 x^{6}+0 x^{5}+1 x^{4}+1 x^{3} \downarrow}{0 x^{5}+1 x^{4}+0 x^{3}+0 x^{2}}
\end{aligned}
$$

check at receiver:

$$
\begin{aligned}
& \frac{\mu(x)+k G(x)-R(x)}{G(x)} \\
& 1011 \begin{array}{r}
1010 \\
\frac{1001110}{1011} \downarrow 1 \\
\frac{0101}{1011} \\
\frac{1011}{0000} \\
\frac{000}{}
\end{array}
\end{aligned}
$$

Exercise 6: What is the probability that a CRC of length $n-k$ bits will be the correct CRC for a randomly-chosen codeword? Assuming random data, what is the undetected error probability for a 16-bit CRC? For a 32-bit CRC?

$$
\begin{aligned}
& \frac{1}{2^{n-k}} \\
& \frac{1}{2^{16}} \approx \frac{1}{65 k} \approx 10^{-5} \\
& \frac{1}{2^{32}} \approx \frac{1}{4 \times 10^{9}} \approx 10^{-9}
\end{aligned}
$$

Exercise 7: How long a CRC is required to guarantee detection of all single-bit errors? Is a 32-bit CRC guaranteed to detect 30 consecutive errors? How about 30 errors evenly distributed within the message?
a CRC of leith $n-k$ can detect $n-k$ enos for 1 error $n-k=1$
yes. will detect up to 32 enos
no. nay not be detected (but probasiby will be),

