Lecture 5 - Baseband Transmitters and Receivers

Exercise 1: What is the current flowing into a 1nF capacitor if it is being charged at a rate of $10V/\mu s$?

$$Q = CV$$

$$Q_{0} = CV$$

$$Q_{1} = C$$

$$Q_{2} = C$$

$$Q_{3} = C$$

$$Q_{4} = C$$

$$Q_{5} = C$$

$$Q_{7} = C$$

$$Q_{7}$$

Exercise 2: The RS-232 standard specifies a maximum slew rate of $30V/\mu s$. Assuming a voltage swing of 30 volts, what is the maximum data rate for which two signal level transitions occupy 10% of the bit period?

$$slew rate = \frac{30V}{201} = \frac{15 - (-15)}{1} = \frac{30V}{6.1 \cdot \frac{1}{min}} = \frac{30V}{0.1 \cdot \frac{30V}{min}} = \frac{30V}{0.1 \cdot \frac{30V}{min}} = 10 \text{ MS}.$$

$$data rate = \frac{10ms}{10ms} = 100 \text{ kHz}$$

Exercise 3: If the capacitance of the transmission line joining several OC drivers is 1 nF and the pull-up resistor is 1 k Ω , how long will it take for the pull-up to pull the line from 0V to 63% of the logic high voltage?

$$R = 10^3$$
 $C = 1 \times 10^{-9}$

$$\begin{vmatrix} -\frac{t}{RC} = 0.63 \end{vmatrix}$$

$$= 0.37$$

$$0.63$$

$$\frac{1}{\text{Rc}}$$

$$t = RC$$
= $10^{-6} = 1 \mu s$.

Exercise 4: What are the consequences of increasing the delay between polls? What other factor might determine the maximum delay before slave gets access to the bus in a system using polling?

- increases delag > increases response time (delay)

slaves.

- length of such Hansmission

Exercise 5: Consider a communication bus in a car that connects an airbag activation controller with a collision detector, a passenger-seat occupancy sensor and an airbag-disabling switch. Would it be more appropriate to use a polling- or contention-based bus arbitration protocol? Would it be appropriate for the arbitration protocol to allow different priorities for bus access? If so, what priorities might be assigned the different sensors?

Exercise 6: If the common-mode circuit is used to carry 500mA, how much current flows through each half of the transformer secondary? What is the net effect on the flux in the transformer core?

Exercise 7: When the input to the optocoupler is high, will the output be high or low? Assume a pull-up is connected to the output.

