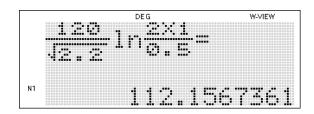
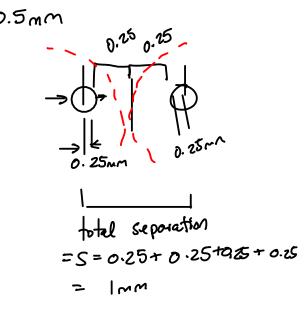

Lecture 3 - Common Transmission Media

the gauge size increases by 6? By 3? Hint: a wire's resistance is proportional to its cross-sectional area.

$$\frac{\bigcirc}{\text{areaz } \pi \cap^2} = \frac{\pi \, d^2}{4}$$

by 6:
$$\frac{d_2}{d_1} = \frac{1}{2}$$
 $\frac{d_2}{d_1} = \frac{1}{2} \frac{1}{2} \frac{1}{\sqrt{2}} = \frac{1}{2} \frac{1}{2} \frac{1}{\sqrt{2}} = \frac{1}{2} \frac{1}{2} \frac{1}{\sqrt{2}} = \frac{1}{2} \frac{1}{2} \frac{1}{\sqrt{2}} = \frac{1}{2} \frac{$


Exercise 2: What is the characteristic impedance of a lossless cable with an inductance of 94 nH per foot and capacitance of 17pF/ft?



Exercise 3: What is the characteristic impedance of UTP made from 24-gauge wire with polyethylene insulation ($\varepsilon_r = 2.2$) of 0.25mm thickness?

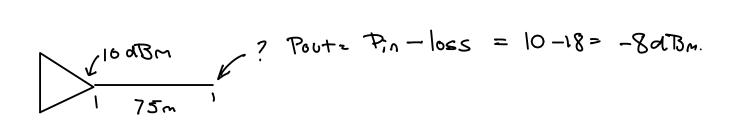
$$\mathcal{D} = 24 \text{ ga} =$$

$$Z_0 \approx \frac{120}{\sqrt{\varepsilon_r}} \ln \left(\frac{2S}{D}\right) \qquad \qquad S = ?$$

Exercise 4: What is the characteristic impedance of a co-ax cable with a 0.8mm diameter center conductor, 3.5mm diameter shield and foamed polyethylene between them that has a dielectric constant of 1.5?

$$Z_{0} = \frac{60}{\sqrt{\epsilon_{V}}} \ln \left(\frac{P}{d}\right)$$

$$= \frac{60}{\sqrt{1.5}} \ln \left(\frac{3.5}{0.8}\right) = 72$$


$$D = 3.5$$
 $d = 6.8$
 $E_{V} = 1.5$

$$Z_0 = 50$$
) 52

$$70$$
, 72 , 75 } common values for $co-ax$

Exercise 5: An 800 MHz signal is output from a CATV amplifier at a power level of 10dBm. What power level would you expect at the other end of a 75m run of co-ax whose loss is specified as 24dB/100m at 800 MHz?

$$|oss| = \frac{24 \text{ dB}}{100\text{ m}}$$
. $75\text{ m} = \frac{24 \cdot 3}{4} = |PdB| |oss|$

Exercise 6: What is the velocity factor for a cable with polyethylene insulation ($\varepsilon_r = 2.2$)? How long would it take for a signal to propagate 100m? For a cable with air dielectric?

a signal to propagate 100m? For a cable with air dielectric?

$$V = \frac{1}{\sqrt{E_{V}}} = \frac{1}{\sqrt{22}} = \frac{1}{\sqrt{22}} = \frac{1}{\sqrt{22}} = \frac{1}{\sqrt{22}} = \frac{1}{\sqrt{22}} = \frac{1}{\sqrt{22}} = \frac{10^{2}}{\sqrt{2}} = \frac{10^{2}}{2 \times 10^{2}} = 0.5 \text{MS}.$$

$$= \frac{1}{2} \times |0^{2} \cdot 10| = \frac{1}{2} \times |0^{2}$$

Exercise 7: If the optical signal wavelength is 1330nm what is the frequency? Note that the wavelength is specified in free space, not in the fiber.

$$f = \frac{C}{2} = \frac{3 \times 10^8}{1.33 \times 10^{-6}} \approx 2 \times 10^{14}$$

$$200 \times 10^{12} = 200 \text{ THz}$$

V- 4

 $c = \frac{\alpha}{1}$

Exercise 9: Rank each of twisted-pair, co-ax, optical fiber and free space media according to cost of the medium, cost of the interface, media size and immunity to interference.

	cost		ı I	die	
	media	interface	midesiz	interference	ı
T.P.	٨	L	M-L	M	1
(0-0×	Н	Μ	M-H	M - H	_
F.O.	MH	Н	_	H	
uncks	L	4	_	L	