Lecture 15 - ARQ and Flow Control

Exercise 1: Create a table summarizing the different types of ARQ. Include: throughput, transmitter memory, receiver memory and relative complexity.

	Stop and wait	go bock	selective repeat
through put { \frac{1000 day}{1000 day}	high low	high if (N≈duby) low enor	high even if
tx memory	I	N	N
rk memory			N?
complexity	s) mplest		most complex

Exercise 2: A data communication system operates at 1 Mb/s and uses 10000-bit data frames and 100-bit ACK frames. What are the frame durations? What is the throughput if there is no channel delay and no errors? If the round-trip channel delay is a 0.5s (typical for satellite links)? If go-back-N ARQ is used, assuming the transmitter can store all unacknowledged frames?

frame durations: 10000us = 10ms and 100us

no-delay throughput: 10000/10.1ms ~ 1 Mb/s

throughput with delay: 10000/0.5s ~ 20kb/s

using go-back-N (no waiting for ACK): ~ 1 Mb/s

Exercise 3: A communication system loses every 10th frame (e.g. due to periodic noise bursts). Ignoring ACK overhead, what is the throughput using go-back-N ARQ? Using Selective ARQ?

throughput assuming N frames have to be retransmitted every 10 frames: 10/(10+N) using selective-repeat: 10/11

Exercise 4: Which of the above flow control methods can be used with frame-oriented protocols? On unidirectional links?

ARQ-based flow control can only be used with frame-oriented protocols. software flow control requires a bidirectional data link.