
ELEX 3525 : Data Communications
2016 Winter Term

FPGA-Based Error Rate Measurement

Introduction

In previous labs we used an arbitrary waveform gen-
erator and digital ’scope to generate and analyze
waveforms. However, in some cases the data rates are
too high to do the processing in soware.

A Field-Programmable Gate Array (FPGA) is a
logic device that can be programmed to implement
any desired digital logic function. FPGAs are use-
ful for implementing custom test and measurement
when the signal frequencies are too high to process
signals in soware.

Logic analyzers are instruments that recognize pat-
terns in digital signals and capture and display them.
FPGAs can be configured to include logic analyzer
features. is approach is oenmore flexible than us-
ing stand-alone logic analyzers.

In this lab you will use an FPGA to implement a
circuit that measures the error rate of data transmit-
ted over a channel. e test circuit on the FPGA gen-
erates and outputs random data at 100 kbps. It com-
pares the received data with the transmitted data and
counts the number of errors and number of transmit-
ted bits. e ratio is the bit error rate (BER). e val-
ues of the two counters will be read using a logic an-
alyzer embedded in the FPGA design.

Youwill also build a simple analog circuit that adds
additive white Gaussian noise (AWGN) to the trans-
mitted data (txdata). eArbitraryWaveformGen-
erator (AWG) will output samples of pre-computed
AWGN plus a DC offset voltage. e comparator
generates the received data signal (rxdata):

%;+

*4+%

4'

97&

GSQTEVEXSV
RSMWI��
SJJWIX

V\HEXE

X\HEXE

e schematic of the comparator circuit is shown
below:

�O�

�O�

�O�

�:�

��
��

��

��

�

X\HEXE
V\HEXE

RSMWI�
SJJWIX

�O�

01���
�2���� �

�

e noise plus a DC offset is applied to the non-
inverting input of the comparator. e 1 kΩ current-
limiting resistor and the 1N5820 Schottky diode pre-
vent the input going more negative than about -0.3 V
and so prevent damage to the comparator.

e 0 to 3.3 V txdata signal is applied to the invert-
ing input through a voltage divider. is keeps the
inverting input in the range of approximately 0–1 V
where the comparator can provide a valid output re-
gardless of the level at the non-inverting input (see
datasheet for details).

e comparator has an open-collector output so a
pull-up is required on the output.

e diagram below shows the inputs to the com-
parator: the noise plus offset and the scaled txdata
signal:

lab7.tex 1 2016-03-16 02:36



�: ���: �:

TVSFEFMPMX]�
HIRWMX]

�ZSPXEKI

�X\HEXE

�RSMWI���SJJWIX

&)6

e AWG is configured to add a DC offset of ap-
proximately 0.5 V to the noise so that the signal at
the non-inverting input is V+ = . + N where N
is the noise voltage. V− is a data signal (txdata)
of approximately 0 V or 1 V. e comparator out-
put will be high when V+ > V− which is when
N+ . >txdata and low when V+ < V− or when
N+ . <txdata.

In the first case an error will happen when txdata
is +1 and N > .. In the second case an error will
happen when txdata is 0 and N < −.. For zero-
mean Gaussian noise both probabilities are the same.

How is this related to error rates? Imagine that we
are transmitting a bipolar NRZ signal with levels of
±. V. e decision threshold will be at zero. Er-
rors will happen when we transmit +0.5 and the noise
voltage is less than -0.5 or when we transmit -0.5 and
the noise voltage is greater than +0.5. ese proba-
bilities are the same as the probabilities shown in the
diagram above.

e value of 0.5 V for the offset is only approxi-
mate. You should measure the high and low voltages
at the inverting input (or the average voltage) and set
the offset to a value half-way between them (or equiv-
alently, to the average voltage).

Note that the data appears inverted at the compara-
tor output (txdata=1 results in a low output). How-
ever, the FGPA circuit inverts rxdata to reverse the
inversion before it is compared with txdata.

In the lab youwill measure the BER for various lev-
els of noise power (standard deviation) and compare
the results to predicted values.

You will use an Altera DE-0 Nano FPGA board
that includes a Cyclone IV FPGA, 8 LEDs, two push-
buttons and two connectors with 40 I/O pins each.

e FPGA is configured with a 100 kHz clock driv-
ing a pseudo-random bit sequence (PRBS) generator
and two counters. One counter counts up on every
clock cycle, the other counts up only when the re-
ceived data does not match the transmitted data (the
XOR gate does the comparison).

Figure 1 shows the schematic of the FPGA. It in-
cludes a 100 kHz clock generator, a pseudo-random
bit sequencer (PRBS) generator and the bit and error
counters.

e FPGAboard has two pushbuttons. One is used
to reset both counters and the PRBS generator. e
other is used as a trigger by the embedded logic ana-
lyzer. e comparator power is supplied by 3.3VDC
from the FPGA board. e FPGA is not tolerant
of 5V signals so external power supplies must not
be used (50% of your lab mark will be deducted if
you connect or turn on a power supply during this
lab!). e FPGA is programmed over a JTAG inter-
face plugged into one of the PC’s USB ports. e
JTAG interface is also used for the logic analyzer in-
terface.

Threshold Comparator Circuit

You can substitute any comparator that operates at
3.3V and has an open-collector output (for exam-
ple the LM3302 which has the same pin-out as the
LM339). e pin-out of these comparators is:

1
2
3
4
5
6
7

14
13
12
11
10

9
8

1OUT
2OUT

V CC
2IN−
2IN+
1IN−
1IN+

3OUT
4OUT
GND
4IN+
4IN−
3IN+
3IN−

D OR N PACKAGE
(TOP VIEW)

epurpose of the diode is to protect the compara-
torwhich cannot tolerate negative voltages. ewhite
band marks the cathode. It must be connected with
the correct polarity or instead of protecting the com-
parator from negative voltage it will prevent positive
voltages from being applied to the comparator and
could result in damage to the comparator.

GEXLSHIERSHI

FERH

e following photograph shows how the circuit
can be assembled on a prototyping board and con-
nections made to a cable that connects to the FPGA

2



 

 

OR'ed output avoids registers being optimized away.

reset

bitclock

reset

reset

sr[9]

bitclock

bitcnt[31..0]

trigger

sr[30..1],txdata

txdata

txdata

bitclock

reset

errcnt[31..0]
bitclock

error

rxdata

txdata

rxdataN

bitcnt[31..0],errcnt[31..0]

VCC
CLOCK_50 INPUT

VCC
KEY[0] INPUT

VCC
KEY[1] INPUT

VCC
GPIO_0_IN[0] INPUT

LED[0]OUTPUT

LED[1]OUTPUT

LED[2]OUTPUT

LED[3]OUTPUT

LED[4]OUTPUT

GPIO_0[32]OUTPUT

LED[5]OUTPUT

left shift
sset

clock

shiftin
q[30..0]

shiftregister

inst2XOR

inst6

NOT

inst7

up countersclr

clock

cnt_en

q[31..0]

bitcounter

bits

up countersclr

clock

cnt_en

q[31..0]

bitcounter

errors

VCC

XOR

inst5

NOT

inst4

Cyclone IV E

inclk0 frequency: 50.000 MHz

Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)

c0 1/500 0.00 50.00

inclk0 c0

locked

bitclock

inst

data[][] result[]

LPM_OR

inst1

PIN_R8

PIN_J15

PIN_E1

PIN_A8

PIN_A15

PIN_A13

PIN_B13

PIN_A11

PIN_D1

PIN_D12

PIN_F3

LPM_WIDTH 1

LPM_SIZE 64

Parameter Value

Figure 1: Bit and Error Counters.

3



board. e red stripe (on the le of the photograph
below) marks the side of the ribbon cable connected
to pin 1.

FPGA Board

e connections to the FPGA are made through a
supplied 40-pin ribbon cable plugged into the GPIO0
connector on the FPGA board (see photo below).

e FPGA will not tolerate 5 V signals.
Obtain 3.3V from the ribbon cable connector pin

29 and ground frompin 30 for the comparator circuit.
e following photograph shows the LEDs and

pushbuttons on the board:

97&�'SRRIGXSV 0)(?�A0)(?�A /)=?�A��XVMKKIV


/)=?�A��VIWIX
+4-3��4MR��

You will use the reset pushbutton (labelled KEY1
on the board) to reset the error counter. You will use

the trigger pushbutton to trigger the logic analyzer
and display the current bit and error counts.

e following diagram labels the connection points
on the ribbon cable connector with pin 1 (red con-
ductor) on top. e letter-number pairs are the
row and column respectively on the 256-pin (16×16)
BGA (ball-grid array) FPGA package; numbers be-
ginning with zero (0) are signal names used in the
the DE-0 documentation (prefixed with GPIO_), the
other numbers are the 40-pin “header” connector
numbers. For example, the signal on FPGA pin A2
has signal name GPIO_02 and is on pin 5 of the con-
nector (third pin from the top on the right side).

D3 00 2 1 0_IN0 A8
C3 01 4 3 0_IN1 B8
A3 03 6 5 02 A2
B4 05 8 7 04 B3
B5 07 10 9 06 A4

GND – 12 11 – 5V
D5 09 14 13 08 A5
A6 011 16 15 010 B6
D6 013 18 17 012 B7
C6 015 20 19 014 A7
E6 017 22 21 016 C8
D8 019 24 23 018 E7
F8 021 26 25 020 E8
E9 023 28 27 022 F9

GND – 30 29 – 3.3V
D9 025 32 31 024 C9
E10 027 34 33 026 E11
B11 029 36 35 028 C11
D11 031 38 37 030 A12
B12 033 40 39 032 D12

FPGA Configuration

e procedure to design the error rate measurement
circuit and configure the FPGAusing the (free)Quar-
tus II soware is as follows:

• start Quartus II (64 bit)

• File -> New -> New Quartus II Project

• create or select a folder, project name (e.g.
lab7), the Cyclone IV E Family, and the
EP4CE22F17C6 device, and leave other settings
set to defaults

4



• select Assignments -> Import Assignments ->
DE0-Nano.qsf to assign FPGA pin numbers to
the signals on the DE0-Nano board. is file is
available on the course web site

• Remove the assignment that sets the drive lev-
els of all output pins to “Minimum”. Under As-
signments ->Assignment Editor, Sort on theAs-
signment Name column to find the line that sets
“Current Strength” for all pins (“*”) to “Mini-
mum Current”. is setting should be disabled
(click on the“Enabled” column and select “No”)
or deleted (right-click on the line and select
“Delete”).

• File -> New -> Block Diagram/Schematic File

• if necessary, select View -> Utility Windows ->
IP Catalog to show the list of configurable intel-
lectual property (IP) blocks

• select Library -> Basic Functions -> Arithmetic
-> LPM_COUNTER

• define the counter component by specifying a
name (e.g. bitcounter), VHDL source, 32-bit
up-only counter with count enable and syn-
chronous clear inputs. Enable generation of a
symbol (.bsf) file.

• select Library -> Basic Functions -> Miscella-
neous -> LPM_SHIFTREG

• define the shi register by specifying a name
(e.g. shiregister), 31 bits, le shi, [parallel]
Data output and a Serial shi data input. Add
a synchronous set input and enable generation
of a symbol file.

• similarly, define a clock component by selecting
Library -> Basic Functions -> Clocks; PLLs and
Resets -> PLL -> ALTPLL

• specify a name (e.g. clock), a 50 MHz input,
locked and a 100 kHz clock outputs (c0), and no
additional inputs or outputs. As before, generate
a symbol file.

• use the “Symbol Tool” and insert two counters,
one clock and one shi register from the Project
library as shown in the schematic. Give each

component instance a unique label (e.g. bits, er-
rors, clock).

• use the “Symbol Tool” and insert the required
xor gates (one for LFSR generator and one
for error detection), inverters (not), one Vcc
constant (to enable the bit counter), and one
64-input OR gate (Megafunctions -> gates ->
lpm_or) as shown in the schematic. Hints: Use
the search box to find components. It is oen eas-
ier to give signals names (right-click -> Properties)
rather than connecting them. Assign names to
the bit and error count signals so the logic ana-
lyzer can select them.

• use the “Pin Tool” to insert the output and input
ports labeled with the exact pin names shown
in the schematic1 Although the pushbutton and
counter outputs are only used by the logic ana-
lyzer, they must drive output pins so that they
are not optimized away. e error and trigger
pushbuttons also drive two LEDs to verify that
the FPGA has been properly configured.

• use the “Bus”, “Node” and “Selection” tools
to connect the components as shown in the
schematic. Note that the bus pin numbers in the
schematic below should be [31..0].

• click on the “Start Compilation” icon. Correct
any errors and recompile as necessary.

• connect the FPGA to the PC’s USB port and se-
lect Tools -> Signal Tap II Logic Analyzer

• under JTAG Chain Configuration -> Setup se-
lect USB Blaster

• under SOF select the correct .sof (FPGA serial
programming) file in the output_files folder

• click on the download (“Program Device”) icon
tomake sure the device is recognized and can be
programmed.

• under Signal Configuration use the node
finder to list all pins using the SignalTapII:pre-
synthesis filter and add the bitclock as the
clock

1Signal names must match the symbol names in the DE0-
Nano settings file or else they will not be connected to the correct
FPGA pins.

5



• in the logic analyzer window double-click in
the indicated area to add signals. As before,
list the pins and add the GPIO_0[32] (txdata),
GPIO_0_IN[0] (rxdata), KEY[0] (trigger) and
KEY[1] (reset) pins to the list of signals being
monitored in the Setup tab. Add the bit and er-
ror count signals.

• right-click on the trigger condition for KEY[0]
(trigger) and select a falling edge

• recompile and reprogram the FPGA

• click on “Autorun Analysis” to start the logic an-
alyzer

• the logic analyzer should display the error and
bit counts in the Data tab each time you press
on the trigger button

• you can change the display format to unsigned
decimal to make it easier to calculate the error
rates.

• check the bit error rate: if the input and output
are not connected it should be 50% (why?); if
connected it should be 100% because of the in-
verter on the data input

Data Analysis

e oscilloscope and DMM can be used to mea-
sure the average data voltage (which should be the
threshold voltage) and the noise RMS voltage at the
comparator inputs. RMS voltages (standard devia-
tions) must be measured using AC coupling and av-
erage voltages (threshold voltage) usingDC coupling.
From these (μ and σ) and knowlege that the noise has
a Gaussian distribution the BER can be predicted.

e logic analyzer can be used to read the bit and
error counter values and their ratio is the measured
BER. e predicted and measured BER values can
then be plotted against each other for a range of SNR
values. When the BER in log units is plotted against
the SNR in dB the result is the familiar “waterfall”
curve showing a rapid reduction in BERwith increas-
ing SNR.

Procedure

Use Quartus II to create the design shown in Figure
1. Program the FPGA. Check that pushing the trigger
button updates the logic analyzer display. Check that
pushing the reset button clear both the bit and error
counters.

Build the comparator circuit and connect it to the
FGPA board using the supplied ribbon cable. e
ribbon cable is keyed and must be connected to the
FPGA board in the correct orientation. Make sure
you identify the correct pins on the other end of the
cable by referring to the diagram above. e end of
the cable with the red stripe is the end with pin 1.

Connect the “noise + offset” input of your circuit
to the AWG. Check that the comparator output re-
sponds as expected as you change the AWG offset
(threshold voltage). Check that the error count as dis-
played by the logic analyzer responds as expected.

Generate a .RAF file for the AWGusing theMatlab
code supplied on the course web site (run the com-
mand berlabnoisegen to generate awgn.raf). Set
the AWG for Arb operation and load the .RAF file.
Select SRate (sample rate) mode and set the sample
rate to 100 kHz. Set the offset to the average data volt-
age (threshold).

Use the ’scope and DMM to measure the average
and RMS voltages at the two comparator pins and use
the logic analyzer to measure the BER.

Set the AWG offset to the correct value (aver-
age voltage of txdata) and check the level with the
DMM. Set the noise RMS voltage to approximately
the values required to achieve the SNRs in your
spreadsheet. Record the threshold voltage (noise av-
erage voltage) and noise RMS voltage. Reset the error
and bit counts and trigger the logic analyzer to view
the bit and bit error counts. Wait until the error count
reaches 10 or more to get a reasonably accurate esti-
mate of the BER. Record the numbers in your spread-
sheet. Repeat for each of the SNRs.

Note that the noise waveform may not contain ex-
treme noise levels (values in the “tails”) so you may
not be see any errors at all at high SNRs.

Compare your measured and predicted results and
try to identify the cause of any differences.

In your spreadsheet you can use the complemen-
tary error function (erfc()) to compute the pre-
dicted error rate:

6



P(x < t) =


erfc

(
−t√


)

Pre-Lab Report

Create the spreadsheet you will use to record your
data. Youwill bemeasuring the threshold voltage, the
noise RMS voltage, the number of bits and the num-
ber of errors. From these you will compute the SNR
(in dB) and themeasured BER. Youwill also compute
the predicted BER using the erfc() function.

Fill in the spreadsheet with a threshold value of
0.5 V (you will change this in the lab) and RMS noise
voltages that will result in SNRs of between 6 and 12
dB in steps of 1.5 dB.

Create a chart similar to the one below showing the
predictedBER for this range of SNRs (youwill add the
measured curve in your final report).

Submit a PDF file containing the usual identifica-
tion information and a printout of your spreadsheet
including the graph of predicted BER vs SNR.

Lab Report

Submit the usual identification information and a re-
port in PDF format containing the following:

• your FPGA block diagram (schematic)

• a plot of the first 200 samples of your noise wave-
form:

• a screen capture showing the signals on the two
comparator inputs (note the measurements are
made with AC coupling to measure the noise
standard deviation and DC coupling to measure
the signal mean):

• a table from your spreadsheet showing the cal-
culation of the predicted and measured BER.
e BER values should range from about −

to about −. For example:

• a plot showing both predicted and measured
BER formatted as follows:

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

5.0 7.0 9.0 11.0 13.0

B
it

 E
rr

o
r 

R
a

te

SNR (dB)

BER vs SNR

predicted

measured

7


