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Data Transmission over Bandlimited Channels

In many cases the channel bandwidth limits the symbol or data rate. is lecture describes two different ways to estimate
the symbol or data rate that can be transmitted over a band-limited channel.
Aer this lecture you should be able to: determine if a channel meets the Nyquist no-ISI criteria and, if so, the maximum
signalling rate without ISI; determine the maximum error-free information rate over an AWGN channel; determine the
specific conditions under which these two limits apply. You should be able to perform computations involving the OFDM
symbol rate, sampling rate, block size and guard interval.

Introduction

All practical channels are band-limited (either low-
pass or band-pass) and the channel bandwidth is of-
ten what limits themaximumdata rate. Wewill study
two theorems, the Nyquist no-ISI criteria and Shan-
non’s capacity theorem, that provide some guidance
about maximum data rate that can be achieved over a
bandlimited channel.

Inter-Symbol Interference

Bandwidth-limited channels attenuate the higher-
frequency components of a signal. is increases the
rise and fall times of waveforms and extends the du-
ration of each symbol. Each signal extends into the
duration of subsequently-transmitted symbols. is
means there is a possibility that each symbols will in-
terfere with subsequently-transmitted symbols. is
interference is called inter-symbol interference (ISI).

Nyquist no-ISI Criteria in Time

Consider a system that transmits symbols as
(infinitely-)short pulses (“impulses”). A low-pass
channel will limit the rise time of the pulses and cause
the impulses to be smeared out in time. However,
if the response of the channel to these impulses
crosses zero at multiples of the symbol period then
the impulses will not interfere with each other. is
is called the Nyquist no-ISI criteria.

An example of an impulse response that meet this
criteria is the sinc() function:

h(t) =
sin(πt/T)

πt/T

which has value 1 at t =  and 0 at multiples of T.

Nyquist no-ISI Criteria in Frequency

It is possible to derive the characteristics of the chan-
nel’s frequency-domain transfer function that result
in no ISI.is condition is that the channel frequency
response have odd symmetry around half of the sym-
bol frequency:

H(

T

+ f) + H(

T

− f) =  for  < |f| < 
T

Note that this condition applies to the complex fre-
quency response. us both the real and imaginary
parts of H(f) need to have this symmetry.

Oen we have little control over the impulse re-
sponse or transfer function of the channel and we
need to add filtering at the transmit or receive sides of
the channel so that the overall transfer functionmeets
the Nyquist criteria.

Just as there could be many impulse responses that
are zero at multiples of the symbol period, there are

lec5.tex 1



many no-ISI transfer functions. For example, the fol-
lowing two straight-line transfer functions meet the
no-ISI condition1:

e “brick-wall” filter (blue) has a response that is
1 below half of the symbol rate ( 

T ) and zero above
that. Although such a filter would have theminimum
overall bandwidth required for a symbol period T, it
is not physically realizable and has other problems as
described below. e filter with the linear transfer
function is more practical but still difficult to imple-
ment. A more practical transfer function is the so-
called raised-cosine function which is a half-cycle of
a cosine function offset to have a minimum value of
zero and centered around half of the symbol rate:

Note that it is the symmetry around the frequency
/T that ensures there will be no ISI rather than the
exact filter shape. us we are free to implement
other transfer functions, possibly arbitrary ones, if
they make the implementation easier.
Exercise 1: Draw the (real portion of) a raised-cosine transfer

function that would allow transmission of impulses at a rate of

800 kHz with no interference between the impulses.

Pulse-Shaping Filter

Note that the no-ISI criteria applies for a channel that
produces no ISI for impulses, not the square pulses
typically used. Since practical systems don’t trans-
mit impulses, the Nyquist criteria cannot be applied

1For simplicity we only show one component (the real or
imaginary portion) of the transfer function.

directly to the physical channel itself. Instead, we
consider that the transmitter includes a hypothetical
filter that converts impulses to pulses before trans-
mitting them over the channel. e response of
this (im)pulse-shaping filter has to be included when
evaluating the channel ISI. It is actually the combi-
nation of this impulse-shaping filter and the channel
that has to meet the Nyquist criteria.

Exercise 2: What is the impulse response of a filter than con-

verts input impulses to pulses of durationT? What is the shape

of the frequency response of this filter? Hint: the Fourier trans-

form of a pulse of duration T is sin(πT)
πT . What is the “bandwidth”

of this filter (when is it first zero)? How does this compare to

the “bandwidth” of the raised-cosine filter above?

Excess Bandwidth

Channels can have different transitions between pass-
band and stopband of the transfer function while still
meeting the no-ISI conditions. However, the width of
this transition has an impact on the shape of the im-
pulse response and on the sensitivity of the receiver
to errors in the timing of the sampling point.

is parameter, α, is called the “excess bandwidth”.
e following diagram shows how the excess band-
width parameter for a raised-cosine transfer function
affects the impulse response.
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Larger values of excess bandwidth (wider band-
width channels) results in less “ringing” of the im-
pulse response which in turn reduces the amount of
ISI near the sampling point of the next symbol. is
makes the receiver less sensitive to errors in its timing
of the sampling point.
Exercise 3: What is the possible range of values of α?

Equalization

To avoid ISI, the total channel response including the
pulse-shaping filters, transmit filters, the channel and
the receiver filter(s) have to meet the Nyquist no-ISI
condition.

When the channel by itself is unlikely to meet the
no-ISI conditions, the transmitter and/or receiver use
filters, known as “equalizers” that modify the over-
all transfer function to ensure the no-ISI condition is
met.

Transmitter and receiver filters typically have other
functions beside equalization. For example, the
transmit filter may limit the bandwidth of the trans-
mitted signal to limit interference to adjacent chan-
nels. e receiver filter may filter out noise and in-

terference from adjacent channels and thus improve
the SIR and SNR. e communication system de-
signer would design the transmitter and receiver fil-
ters to meet both the filtering and equalization re-
quirements.

A common situation is a flat channel where inter-
ference is not an issue. In this case a reasonable ap-
proach is to put half of the filtering at the transmitter
and half at the receiver. In order to achieve an overall
raised cosine transfer function, each side has to use
a “root raised cosine” (RRC) transfer function. e
product of the two filters is thus the desired raised-
cosine function which meets the no-ISI condition.

Exercise 4: Could equalization be done at the receiver only?

At the transmitter only? Why or why not?

Adaptive Equalizers

In many communication systems the transfer func-
tion of the channel cannot be predicted ahead of
time. One example is a modem used over the pub-
lic switched telephone network (PSTN). Each phone
call will result in a channel that includes different
“loops” and thus different frequency responses. An-
other example is multipath propagation in wireless
networks. e channel impulse response changes as
the receiver, transmitter or objects in the environ-
ment move around.

To compensate for the time-varying channel im-
pulse response the receiver can be designed to adjust
the receiver equalizer filter response using various al-
gorithms.

Eye Diagrams

An eye diagram is superimposed plots of duration T
(the symbol period) of the receivedwaveform for ran-
dom data. e eye diagram graphically demonstrates
the effect of ISI. Some examples of eye diagrams pro-
duced by an appropriately-triggered oscilloscope2:

2From John G Proakis, “Digital Communications”, 3rd Ed.,
1983.
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e vertical opening at the sampling time, called
the “eye opening”, represents the amount of ISI at the
sampling point.

e horizontal opening indicates how sensitive the
receiver would be to errors in sampling point timing3:

OFDM

An alternative to equalization is a technique called
Orthogonal Frequency Division Multiplexing
(OFDM). An OFDM transmitter gathers blocks of N
consecutive symbols and uses them to modulate N
“subcarriers” (modulation will be discussed later).
e net effect is to reduce the symbol rate by a
factor N. e value of N is typically a power of 2 to
allow efficient implementation using Fast Fourier
Transforms (FFTs).

e reduction in symbol rate (or increase in sym-
bol period) reduces the impact of ISI because the im-
pulse response of the channel is now a shorter frac-
tion of the symbol period. Most OFDM systems also

3Proakis, op. cit.

insert a “guard time” (or “guard interval”) between
symbols that is longer than the duration of the im-
pulse response of the channel. is eliminates inter-
ference between symbols. To do this a small num-
ber of the final samples of each block of N samples
are copied to the start of the symbol and transmitted
during the guard time. Because the block of N sam-
ples is periodic this is called a “cyclic” or “periodic”
extension.

OFDM has become more popular than adaptive
equalization because it is simpler to implement and
more robust. is is partly because it is not necessary
to estimate the channel to correct for ISI. OFDM is
used by most modern ADSL, WLAN and 4G cellular
standards.
Exercise 5: The 802.11g WLAN standard uses OFDM with a

sampling rate of 20 MHz, with N =  and guard interval of

.μs. What is the total durationof eachOFDMblock, including

the guard interval? How many guard samples are used?

Shannon Capacity

eShannonCapacity of a channel is the information
rate above which it is not possible to transmit data
with an arbitrarily low error rate. For the Additive
White Gaussian Noise (AWGN) channel the capacity
is:

C = B log
(
+

S
N

)
where C is the capacity (b/s), B is the bandwidth (Hz)
and S

N is the signal to noise (power) ratio.
e Shannon limit does not say that you can’t

transmit data faster than this limit, only that if you
do, you can’t reduce the error rate to an arbitrarily
low value.

Shannon’s work also does not specify how to
achieve capacity, for example, what modulation and
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coding should be used. However, Shannon’s work
does hint that using error-correcting codes should al-
low us to achieve arbitrarily-low error rates as long as
we limit the data (actually, information) rate to less
than the channel capacity.
Exercise 6: What is the channel capacity of a 3 kHz channel

with an SNR of 20dB?

Implementing systems that operate at close to
channel capacity requires coding. Some systems us-
ing modern codes such as Low Density Parity Check
(LDPC) codes can operate within a fraction of a dB of
channel capacity.

Note that the symbol rate limitations defined by the
Nyquist criteria do not limit the achievable bit rate or
determine the capacity of the channel. For example,
we can use arbitrarily large symbol sets to increase the
bit rate without increasing the symbol rate.

e use of PR signalling or sequence estimation
also allow us to transmit arbitrarily high symbol rates
over channels that don’t meet the Nyquist no-ISI cri-
teria. Whether the symbols can be recovered without
errors will depend on the SNR.

Also note that the Shannon capacity refers to in-
formation rate (the bit rate aer maximum possible
compression), not to the bit rate.
Exercise 7: What are somedifferences between the signalling

rate limit imposed by the Nyquist no-ISI criteria and the Shan-

non Capacity Theorem?
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