Lecture 7 - Line Codes

Exercise 1: Approximately what bandwidths and center ferequencies might be used by each of the following: Telephones? AM broadcasting? Ethernet LAN? A cable TV channel? Which are baseband channels?

$$
\begin{aligned}
& \text { Telephone: } 300-3 \mathrm{KHz} \text { Dosebond } \\
& \text { AM Broadcast: } 540-1800 \mathrm{kHz} \text { passband } \\
& 13 / \omega \simeq 10 \mathrm{kHz}
\end{aligned}
$$

Ethernet :
cable TV
50 MHz $\rightarrow 1 \mathrm{GHz}$

$$
B / \omega \sim 5 M H z
$$

Exercise 2: Assume a 1 is transmitted as 5 V and 0 as 0 V . Draw the waveform for the bit sequence 1011. Draw the waveform if the bits are transmitted differentially with a 1 encoded as a change in level. Assume the initial value of the waveform is 0. Invert the waveform and decode it.

NRZ

differential NRZ (NRZI)

inverted
decoded bits

Exercise 3: You receive the sequence of bits 10001101 and are told that bit stuffing was used to limit runs of 0 to three or fewer. What was the original data sequence?

Exercise 4: How many combinations are there of 3 bits? Of 4
bits? How many bits might be input and output by an 8B10B code? What might a 4B3T code mean?

$\begin{aligned} 3 \text { bits } \Rightarrow 2 \times 2 \times 2 & =2^{3}=8 \\ 4 \text { bits } & =2^{4}=16\end{aligned}$
combinations

4 sits

in

combinations

combinations

Exercise 5: Design your own 2B3B line code by choosing the output waveforms that have the lowest average DC value and giving preference to those that start and end at different levels (assume bipolar signalling).

$$
\begin{aligned}
& \text { bipolar } \\
& \text { NR }
\end{aligned}
$$

(\times^{3})
average

-1	
+1	
-1	

Exercise 6: A link operates at $100 \mathrm{Mb} / \mathrm{s}$. What /s the bit perood? The transmitter and receiver have independent clocks (oscillators) with accuracies of 100 ppm . What /s the maximum difference between the two clock periods in ppm? In seconds?

The timing error due to a frequency (p (rood) difference accumulates over time. How many bits wig it take for the accumulated error to equal 10% of the clock period?

Exercise 7: What is theprobapility of having 30 consecutive 1's in a stream of random pity? Of 50 consecutive ones? How often would this happen af a bit rate of $1 \mathrm{~Gb} / \mathrm{s}$? (Hint: $1 \mathrm{~Gb} / \mathrm{s}$ is about 2^{30} bits/second, there fare about 2^{25} seconds per year).

Exercise 8: A data link operates over a distance of 10 m at 100 kb / s. If the velocity factor of the cable is 0.66 , what is the propagation delay in microseconds? What fraction of the bit period does this represent?

