Lecture 10 - Polynomials in GF(2) and CRCs

Exercise 1: Write the addition, subtraction and multiplication tables for GF(2). What logic function can be used to implement modulo-2 addition? Modulo-2 multiplication?

Exercise 2: What are the possible results if we used values 0 and 1 but the regular definitions of addition and multiplication? Would this be a field?

Exercise 3: What is the polynomial representation of the codeword 01101?

$$0 = \frac{3}{2} + \frac{3}{2} + \frac{2}{3} +$$

Exercise 4: What is the result of multiplying $x^2 + 1$ by $x^3 + x$ if the coefficients are regular integers? If the coefficients are values in GF(2)?

Meguler folics
$$\begin{array}{c}
x^{2} + 1 \\
x^{3} + 2x \\
x^{5} + 2x^{3} + 2x
\end{array}$$

$$\begin{array}{c}
x^{5} + 2x^{3} + 2x \\
x^{5} + 2x^{3} + 2x
\end{array}$$

$$\begin{array}{c}
x^{5} + 0x^{3} + 2x \\
x^{5} + 2x \\
x^{5} + 2x
\end{array}$$

$$\begin{array}{c}
x^{5} + 2x^{3} + 2x \\
x^{5} + 2x \\
x^{5} + 2x
\end{array}$$

Exercise 5: How do we "subtract" a polynomial in GF(2)?

Exercise 6: If the generator polynomial is $G(x) = x^3 + x + 1$ and the message is 1001, what are n - k, M(x) and the CRC? Check your result. Invert the last bit of the CRC and compute the remainder again.

Exercise 7: What is the probability that a randomly-chosen set of n-k parity bits will match the correct parity bits for a given codeword? Assuming random data, what is the undetected error probability for a 16-bit CRC? For a 32-bit CRC?

have
$$2^{n-k}$$
 possible $CPCs$,

probability of the right $CPC = \frac{1}{Z^{n-k}}$

for $16-bit$ CPC $0EP = \frac{1}{655>6}$
 $32 \ bit$ CPC $0EP = \frac{1}{Z^{32}} = \frac{1}{4}10^{-9}$