Exercise 1: Write the addition, subtraction and multiplication tables for $G F(2)$. What logic function can be used to implement modulo- 2 addition? Modulo- 2 multiplication?

\oplus	0	1
0	0	1
1	1	0

x	0	1
0	0	0
1	0	1

Exercise 2: What are the possible results if we used values 0 and 1 but the regular definitions of addition and multiplication? Would this be a field?

0	1	
0	0	1
1	1	2

No. with this dofintan of addition This is not a field: dosing have closure

Exercise 3: What is the polynomial representation of the codeword 01101?

$$
\begin{aligned}
& 0 x^{4}+1 x^{3}+1 x^{2}+0 x^{1}+1 x^{0} \\
& =x^{3}+x^{2}+1
\end{aligned}
$$

Exercise A: What is the result of multiplying $x^{2}+1$ by $x^{3}+x$ if the coefficients are regular integers? If the coefficients are values in $G F(2)$?
$\frac{\text { regular rules }}{x^{2}}$

$$
x^{2}+1
$$

$$
\frac{x^{3}+x}{x^{3}+x}
$$

$$
\frac{x^{5}+x^{3}}{x^{5}+2 x^{3}+x}
$$

$$
\begin{gathered}
\frac{G F(2) \text { rules }}{x^{2}+1} \\
\frac{x^{3}+x}{1 x^{3}+x} \\
x^{5}+1 x^{3} \\
x^{5}+0 x^{3}+x \\
x^{5}+x
\end{gathered}
$$

Exercise 5: How do we "subtract" a polynomial in GF(2)? ad ∂ it (same operation)

Exercise 6: If the generator polynomial is $G(x)=x^{3}+x+1$ and the message is 1001, what are $n-k, M(x)$ and the CRC? Check your result. Invert the last bit of the CRC and compute the remainder again.

$$
\underbrace{n-k}=3
$$

number of poritybits
$=1$ less than bits in $G(x)$
=order of $G(x)$
check $w /$ ho error:

Exercise 7: What is the probability that a randomly-chosen set of $n-k$ parity bits will match the correct parity bits for a given codeword? Assuming random data, what is the undetected error probability for a 16 -bit CRC? For a 32-bit CRC?
have 2^{n-k} possible $C R C_{s}$.
probability of the sight $C R C=\frac{1}{2^{n-k}}$
for $16-6$ it $C R C \quad V E P=\frac{1}{653>6}$

$$
32 \text { bit cR } \quad U \in P=\frac{1}{2^{32}}=\frac{1}{4} 10^{-9}
$$

