Solutions to Assignment 4

Question 1

A modulator that multiplies the baseband signal with a carrier shifts the baseband signal to the carrier frequency and results in an RF bandwidth which is twice the baseband bandwidth.

If the RF channel has a bandwidth of 5 MHz the maximum allowable bandwidth of the baseband modulating signal must therefor be 2.5 MHz .

Question 2

From the 16-QAM 802.11 WLAN constellation diagram on page 3 of Lecture 11 (Modulation), the symbol with bit values 1011 in is transmitted with $\mathrm{I}=+3$ and $\mathrm{Q}=+1$. The maximum magnitude (amplitude) of the constellation as shown is $\sqrt{18}$.

The phase is therefore $\tan ^{-1}\left(\frac{1}{3}\right) \approx 18^{\circ}$ and the magnitude is $\sqrt{1^{2}+3^{2}}=\sqrt{10} \approx 3.2$.

Question 3

(a) The constellation shown has 4 possible symbol values so $\log _{2}(4)=2$ bits can be transmitted per symbol.
(b) On possible assignment of Gray-coded bit values to each of the four possible symbols is as shown:

Question 4

(a) For a $k=4$-bit ML LFSR the sequence length is $2^{k}-1=15$ bits.
(b) The subsequent shift register states can be computed by shifting into the left a bit that is the XOR of the two rightmost bits. The initial and the four next states will be:

```
            1101
```

 1110
 1111
 0111
 0011

The current output is thus 1 and this will be followed by $0,1,1$, and 1 .

Question 5

A transmission of 200 bits at $350 \mathrm{~kb} / \mathrm{s}$ takes $\frac{200}{350 \times 10^{3}} \approx$ $571 \mu \mathrm{~s}$. Adding a 20μ s guard time results in a time slot duration of about $591 \mu \mathrm{~s}$. We can thus accomodate $\frac{20 \mathrm{~ms}}{591 \mu \mathrm{~s}} \approx 33.8$ slots which must be rounded down to 33 slots. The system will accomodate 33 users.

Question 6

Selective-repeat ARQ gives the best performance, regardless of complexity or cost. The TCP protocol used by most Internet protocols uses go-back-N ARQ with an option to use selective-repeat ARQ.

Question 7

As shown in Figure 4 of RFC 791, an IP header with no options has 20 bytes. If the payload is 512 bytes, the total length will be $512+20=532=0 \times 0214$.

The checksum was calculated by adding each of the 16-bit words:

```
4 5 0 0
```

0214
1000
0000
1001
0000
0101
0101
0202
0202
6D1B
adding the overflow into the MS 16 bits (0), and inverting all of the bits to get 92E4.

