## Solutions to Assignment 1

## Question 1

Many files, including PDF files, begin with a "magic" value that identifies the type of file. For this specific PDF file the magic value is the 8 -byte string: "\%PDF-1.5".
(a) The values of the first 8 bytes in hexadecimal are: 25504446 2d 31 2e 35.
(b) The values of the first four 16-bit values assuming little-endian byte order are: 0x5025 (20517), $0 x 4644$ (17988), $0 x 312 \mathrm{~d}$ (12589) and $0 x 352 \mathrm{e}$ (13614).
(c) The values of the first two 32-bit values, assuming big-endian byte order are: 0x25504446 (626017350) and 0x2d312e35 (758197813).
(d) Since the first 8 characters are all less than or equal to $0 x 7 f$ they are all ASCII (in the Unicode Basic Latin Table) and the characters are "\%PDF1.5".

## Question 2

## (a)

(b) We can compute the number of bits of information for each message as $\log _{2}(P)$ (or $(\log (P) / \log (2))$ and the entropy by weighting each message's information by its probability. This is easily done using a spreadsheet:

| $P(m)$ | $I(m)$ | $P(m)^{*} I(M)$ |
| ---: | ---: | ---: |
| 0.01 | 6.64 | 0.07 |
| 0.03 | 5.06 | 0.15 |
| 0.10 | 3.32 | 0.33 |
| 0.25 | 2.00 | 0.50 |
| 0.25 | 2.00 | 0.50 |
| 0.25 | 2.00 | 0.50 |
| 0.10 | 3.32 | 0.33 |
| 0.01 | 6.64 | 0.07 |
| 1.00 | Entropy: | $\mathbf{2 . 4 5}$ |
|  |  |  |
|  |  |  |

(c) Assuming all messages are equally likely, and one message is generated per minute, the information rate is: $2.45 / 60=41 \times 10^{-3}$ bits/second.
(d) The data rate if we transmitted 3 bits per message would be: $3 / 60=50 \times 10^{-3}$ bits/second.

## Question 3

The character with Unicode code point $\mathrm{U}+1234$ is Ethiopic Syllable See:

The value $0 \times 1234$ is 0001001000110100 in binary and must therefore be encoded into UTF-8 using the third row of Table 3-6.

The bits assignments are: zzzz=0001 yyyyyy $=001000 \times x x x x x=110100$ and the UTF- 8 encoding in binary is: 111000011000100010110100 which is 0 xe 10 x 880 xb 4 .

## Question 4

The bytes $0 x e 5$ 0x93 0xb2 are 111001011001001110110010 in binary from which we can get the bit assignments: zzzz $=0101$, yуyуyy=010011 and $\operatorname{xxxxxx=110010.~}$

The code point in binary is thus 0101010011110010 which is $0 \times 54 \mathrm{f} 2$.

From the Unicode standard this is: 哲 which means "wise, sagacious; wise man, sage."

## Question 5

(a) The FER is the fraction of frames with errors or $\frac{23}{750000} \approx 31 \times 10^{-6}$.
(b) If each frame with errors had only one bit in error the number of bits is $128 \times 750,000=96 \times 10^{6}$ and the BER is the faction of bits with errors, or $\frac{23}{96 \times 10^{6}} \approx 240 \times 10^{-9}$.

