Lecture 2 Notes

Exercise 1: What is the characteristic impedance of UTP made from 24-gauge wire with polyethylene insulation ($\epsilon_r = 2.2$) of 0.25mm thickness?

Exercise 2: What is the characteristic impedance of a co-ax cable with a 0.8mm diameter center conductor, 3.5mm diameter shield and foamed polyethylene between them that has a dielectric constant of 1.5?

$$Z_{0} = \frac{138}{\sqrt{2r}} \log_{10} \left(\frac{D}{d} \right) = \frac{138}{\sqrt{1.5}} \log_{10} \left(\frac{3.5}{0.8} \right) = 72 \Omega$$

$$= \frac{138}{\sqrt{1.5}} \log_{10} \left(\frac{3.5}{0.8} \right) = 72 \Omega$$

$$= \frac{138}{\sqrt{1.5}} \log_{10} \left(\frac{3.5}{0.8} \right) = 72 \Omega$$

$$= \frac{138}{\sqrt{1.5}} \log_{10} \left(\frac{3.5}{0.8} \right) = 72 \Omega$$

Exercise 3: An 800 MHz signal is output from a CATV amplifier at a power level of 10dBm. What power level would you expect at the other end of a 75m run of co-ax whose loss is specified as 24dB/100m at 800 MHz?

Exercise 4: What is the velocity factor for a cable with polyethylene insulation ($\epsilon_r = 2.2$)? How long would it take for a signal to propagate 100m? For a cable with air dielectric?

$$VF = \frac{1}{\sqrt{2}v} = \frac{1}{\sqrt{2.2}} = 0.67$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$VF = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$V = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$V = \frac{v}{c}$$

$$V = VF \cdot c = 0.67 \cdot 3 \times 10^{8} = 2 \times 10^{8} \text{ m/s}$$

$$V = \frac{v}{c}$$

$$V = \frac$$

Exercise 5: What is the characteristic impedance of a lossless cable with an inductance of 94 nH per foot and capacitance of 17pF/ft?

$$Z_0 = \sqrt{\frac{L}{C}} = \sqrt{\frac{94 \times 10^{-9}}{17 \times 10^{-12}}} = 74 \Omega$$

Exercise 6: If the optical signal wavelength is 1330nm what is the frequency?

$$\lambda = \frac{C}{f} \qquad f = \frac{C}{\lambda} = \frac{3 \times 10^{6}}{1.3 \times 10^{-6}} = 2 \times 10^{14} = 266 \times 10^{12}$$

$$200 + 42 \qquad 1642$$

$$\frac{0.1}{200}$$

.

Exercise 7: How much does a cable's resistance increase when the gauge size increases by 6? By 3? Hint: a wire's resistance is proportional to its cross-sectional area.

	Ag gauge 'noveses by	DD dianeter incroses by	(D) ² area ichuses by	mistarce mirases by
24	0	1	1	1
36ga	+6	2	- 4	4
18ga	- 6	2	4	1 4
27 ga	+3	VZ	1/2	2

27 ga:
$$\frac{1}{4}$$
?

0.75?

expressions tel?

try:
$$\Delta D = \left(\frac{1}{2}\right)^{\frac{\Delta s}{6}}$$

$$\Delta D = \left(\frac{1}{2}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{2}}$$

Exercise 8: A point-to-point link uses a transmit power of 1 Watt, transmit and receive antennas with gains of 20dB and operates at 3 GHz. How much power is received by the receiver?

$$\lambda = \frac{c}{f} = \frac{3\times10^8}{3\times10^9} = 10^{-1}$$

$$d = ? \quad qssume \quad | \quad km = | D^{m} \quad P_{T} = | W \quad 20 \\ G_{T} = 20 dB = | D^{-1} = | DD | \\ G_{T} = 20 dB = | D^{-1} = | DD | \\ G_{T} = 20 dB = | D^{-1} = | DD | \\ G_{T} = 20 dB = | D^{-1} = | D^{-$$

 $1E4\times\left(\frac{1E-1}{4\times\pi\times1EE}\right)^2=$

$$G_{T} = |W|$$

$$G_{T} = |W|$$