Assignment 1 Solutions

Question 1

As an example, if 1234 is the decimal number we can convert it to binary by subtracting successivelysmaller powers of 2 :

```
1234-1024 = 210
    210-128=82
    82-64=18
    18-16 = 2
        2-2=0
```

so 1234_{10} (base 10) is $2^{10}+2^{7}+2^{6}+2^{4}+2^{1}$ or 0000010011010010 (base 2). This is in MS to LS bit order (network order).

To convert to hexadecimal, each group of 4 bits is converted to a hexadecimal number resulting in the value $0 x 04 \mathrm{D} 2$.

If the two bytes were swapped to little-endian order the value would be $0 x \mathrm{x} 204$. If the bits in each byte were also swapped the bits would be 01001011 followed by 00100000 which is 0 x 4 B 20 .

Unless your student number ends in 1234 your answer would, of course, be different.

Question 2

The Unicode code point (the index in the Unicode code table) of the character CANADIAN SYLLABICS PAA $(\dot{<})$ is found on page 4 of http://www.unicode.org/charts/PDF/U1400.pdf as 0x1439.

Question 3

The Chinese character for "Rice" (the grain) is "米" with Unicode value (code point) U+7C73. Converting this to binary we get:

0111110001110011
which must be encoded using the third line. According to this row in the table the binary number is split into the three fields with 4,6 , and 6 bits each:

$$
\begin{aligned}
& z Z Z Z=0111 \\
& \text { yyyyyy }=110001 \\
& \text { xxxxxx }=110011
\end{aligned}
$$

then by inserting these fields into the corresponding fields in the table we get the binary value:

111001111011000110110011
which is the three-byte value 0 xE 7 B 1 B 3 . Therefore:

- it takes three bytes to represent the character 米
- the byte values are $0 \mathrm{xE} 7,0 \mathrm{xB} 1$ and 0 xB 3

Question 4

Since the diameter of 24 -gauge wire is approximately 0.5 mm , the diameter of 14 -gauge wire is given by:

$$
D=0.5 \times 2^{\frac{(24-14)}{6}}=0.5 \times 2^{1.67}=1.6 \mathrm{~mm}
$$

The characteristic impedance of a twisted pair cable is given by:

$$
Z_{0} \approx \frac{120}{\sqrt{\epsilon_{r}}} \ln \left(\frac{2 S}{D}\right)
$$

so we can solve for the conductor spacing S :

$$
S \approx \frac{D}{2} \exp \left(Z_{0} \frac{\sqrt{\epsilon_{r}}}{120}\right)
$$

For polyethylene insulation $\epsilon_{r}=2.2$ and we require $Z_{0}=80 \Omega$ so the conductor spacing is:

$$
S \approx \frac{1.6}{2} \exp \left(80 \frac{\sqrt{2.2}}{120}\right)=2.1 \mathrm{~mm}
$$

S is the distance between the centers of the conductors which is equal to twice the thicknesses of the insulation (call it T) plus twice the wire radius (which is the wire diameter, D). Thus $S=2 T+D$. So the insulation thickness is: $T=(S-D) / 2=$ $(2.1-1.6) / 2=0.27 \mathrm{~mm}^{1}$

[^0]Using the equations:

$$
\frac{c}{\sqrt{\epsilon_{r}}}=\frac{1}{\sqrt{L C}}
$$

where c is the velocity of light $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ and L and C are the cable inductance and capacitance per meter, and

$$
Z_{0}=\sqrt{\frac{L}{C}}
$$

we can solve for C as:

$$
C=\frac{\sqrt{\epsilon_{r}}}{c Z_{0}} \mathrm{~F} / \mathrm{m}
$$

using the values for Z_{0} and ϵ_{r} above, we find $C=$ $62 \mathrm{pF} / \mathrm{m}$.

Question 5

The propagation delay through the cable, assuming a velocity factor 0.66 is:

$$
d / v=50 /\left(0.66 \times 3 \times 10^{8}\right)=250 \mathrm{~ns}
$$

At a frequency of 3 MHz this delay would result in a phase shift of:
$2 \pi f \tau$ rad. $=360^{\circ} \times 3 \times 10^{6} \times 250 \times 10^{-9}=270^{\circ}$
Since the question did not state the type of dielectric, other values for velocity of propagation $\leq 3 \times 10^{8}$ are acceptable. For air dielectric the phase shift would be 180°.

Question 6

The received signal level for a LOS link is given by the Friis equation:

$$
P_{R}=P_{T} G_{T} G_{R}\left(\frac{\lambda}{4 \pi d}\right)^{2}
$$

or if all gains are in dB and the transmit power is in dBW (or dBm),

$$
P_{R}=P_{T}+G_{T}+G_{R}+20 \log \left(\frac{\lambda}{4 \pi d}\right)
$$

where $P_{T}=50 \mathrm{~kW}=10 \log \left(50 \times 10^{3}\right)=47 \mathrm{dBW}$, $G_{T}=12, G_{R}=0, \lambda=c / f=3 \times 10^{8} / 644 \times 10^{6}=$ 0.465 m and $d=12 \times 10^{3}$. The result is:
$P_{R}=47+12+0+20 \log \left(\frac{0.465}{4 \pi \times 12 \times 10^{3}}\right)=-51 \mathrm{dBW}$

[^0]: ${ }^{1}$ You have to use more than two significant digits in your calcuations in order to get an accurate numerical result because the two quantities being subtracted have about the same same value.

