
ELEX 3525: Data Communications
2023 Fall Term

Character Encodings and Unicode

This chapter describes how characters are encoded into bits.
After this chapter you should be able to convert between characters, Unicode code points and their UTF-8 encodings.

Unicode Character Encodings

Data often represents printable characters.
A standard called Unicode assigns a unique num-

ber, called a “code point,” to over 100,000 of the char-
acters used by more than 100 languages and scripts.
Unicode is used bymost operating systems and Inter-
net applications.
Exercise 1: Howmany bits would be required to uniquely identify
100,000 different characters? (Hint: 216 = 65536).
Each character could be represented with a 32-

bit (4 byte) number. However, the UTF-8 (Unicode
Transformation Format - 8 bits) format is widely used
since it allows many documents to be stored or trans-
mitted using fewer bytes. It also has some practical
advantages1
ASCII (American Standard Code for Information

Interchange) was an earlier character encoding that
used 7 bits to encode letters from the English alpha-
bet, numbers, and the most common punctuation
symbols. UTF-8 is exactly the same asASCII for these
first 128 (27) characters. This means that ASCII doc-
uments are already encoded as UTF-8.
The table below shows theASCII tablewhich is the

first “code chart” from the Unicode standard. The
columns are labelled with the most significant (first)
hex digit and the rows with the least-significant (sec-
ond) hex digit of the numerical value of each charac-
ter.
ASCII also includes some non-printable control

codes (values 0 to 31) that were used to control print-
ers. For example the line feed (LF) character would
move the paper in the printer up one line.
Other Unicode characters require between 2 and

4 bytes according to the rules summarized in Table
3-6 of the Unicode standard shown below. Unicode
values between 128 and 2047 include most charac-
ters from European languages and can be encoded in
two bytes. Values from 2048 to 65535 include most

1The UTF-8 encoding has no zero bytes and all values <0x80
represent ASCII characters.

CJK (Chinese, Japanese and Korean) characters and
require three bytes. Some rarely-used symbols (e.g.
emoticons or Mahjong tiles) have four-byte encod-
ings.

Encoding to UTF‑8

Step 1 From the value of the character’s code point
choose a sequence of bytes (all numbers in hexadeci-
mal):

code point prefixes
0 – 7F 00

80 – 07FF C0 80
800 – FFFF E0 80 80

> FFFF F0 80 80 80

Step 2 Convert the code point to binary and divide
the value into groups of 6 bits.

Step 3 Starting at the right, add each group of 6 bits
to the corresponding byte, starting at the right.

Example

The codepoint for the CJK character for potato (藷) is
U+85F7. From the table above, this must be encoded
into the three bytes E0, 80 and 80. The code point in
binary is 1000 0101 1111 0111. The groups of 6 bits,
starting on the right are thus 11 0111 (37), 01 01 11
(17), and 00 1000 (08). Adding these to the prefixes
the bytes in the UTF-8 encoding are (E0+08=E8),
(80+17=97), and (80+37=B7).
Exercise 2: The Chinese character for “Rice” (the grain) is米 with
Unicode value (code point) U+7C73. What is the UTF‑8 encoding for
this character?

Decoding from UTF‑8

The most significant nybble of each byte in a UTF-8
sequence identifies its purpose:

lec3.tex 1 2023-09-14 19:57

http://unicode.org

nybble meaning
0 – 7 ASCII, one byte

8, 9, A, or B the second, third or fourth byte of
an encoding

C or D start of a 2-byte encoding
E start of a 3-byte encoding
F start of a 4-byte encoding

Step1 Scan for a bytewhosemost significant nybble
is not 8, 9, A or B. This will be the first byte of a UTF-8
sequence.

Step 2 Extract the appropriate number of bytes (1
through 4).

Step 3 Delete the bits indicated by 0 or 1 in Table
3-6 above.

Step 4 Concatenate the remaining bits. This is the
code point in binary. Group every 4 bits starting on
the right and convert the nybbles to hex.

Example

Find the first Unicode character in the UTF sequence
BC, D0, BE. First we ignore the byte BC because the
initial nybble is B. Then we extract 2 bytes because
the most significant nybble of the byte D0 indicates
a 2-byte encoding. Then we convert the two bytes
to binary: D0 = 1101 0000 and BE = 1011 1110.
Deleting the leading three bits from the first byte
and the leading two bits from the second we are left
with 1 0000 11 1110. Grouping into nybbles this is
0100 0011 1110 and converting to hexadecimal this
is 43F. Looking this up in the Unicode charts (or on
unicode.org) show this is the character п, “CYRILLIC
SMALL LETTER PE.”

Exercise 3: Find the codepoint of the first Unicode character in the
sequence of bytes: A0 88 EB 8C 80 EC.

Text versus Binary Number Representations

It’s important to understand the difference between
text that represents a number and binary data. For
example, the character ‘1’ would be transmitted with
a UTF-8 encoding as the byte 0x31 while a byte with
the value 1 could be transmitted as 0x01.
Numbers can be stored in files or transmitted over

communication systems in either binary format (e.g.
one 8-bit value per byte) or in text format (as a se-
quence of numeric characters). Numbers in text for-
mat can be more easily interpreted by humans since
they are sequences of printable characters.
Exercise 4: Four numbers are transmitted as the following CSV file:
2, 1
9, 3
How many bytes are required to transmit these four numbers for‑
matted this way? Note that a “line feed” character is required at the
end of each line and that spaces and commas also need to be trans‑
mitted.

How many bytes are required to transmit these four numbers if
they are transmitted, one after another, if each is encoded as a 16‑
bit number? What if eachnumberwasencodedasa32‑bit number?

2

The Unicode Standard 6.2, Copyright © 1991-2012 Unicode, Inc. All rights reserved.

007FC0 Controls and Basic Latin 0000

000 001 002 003 004 005 006 007



































































!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~



0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

000C

000D

000E

000F

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

001A

001B

001C

001D

001E

001F

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

002A

002B

002C

002D

002E

002F

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

003A

003B

003C

003D

003E

003F

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

004A

004B

004C

004D

004E

004F

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

005A

005B

005C

005D

005E

005F

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

006A

006B

006C

006D

006E

006F

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

007A

007B

007C

007D

007E

007F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

	Unicode Character Encodings
	Encoding to UTF-8
	Example

	Decoding from UTF-8
	Example

	Text versus Binary Number Representations

