Character Encodings and Unicode
Exercise 1: How many bits would be required to uniquely identify 100,000 different characters? (Hint: $2^{16}=65536$).

$$
2^{17}=2^{\prime} \cdot 2^{16}=2 \times 65536>100,000
$$

$\therefore 17$ bits would be sufficient.

Exercise 2: The Chinese character for "Rice" (the grain) is 米 with Unicode value (code point) U+7C73. What is the UTF-8 encoding for
this character?

Step 1: use EO 8080 as prefixes

Step 2:7

Exercise 3: Find the codepoint of the first Unicode character in the sequence of bytes: A0 88 KB BC 80 EC.
$\xrightarrow{\longrightarrow}$ not ∂_{n} initial byte - Step 1

$$
\text { LB } 8 \subset 80 \downarrow \rightarrow \text { step } 2
$$

Exercise 4: Four numbers are transmitted as the following CSV file: 2,', 1 'n'
9, 3 \h
How many bytes are required to transmit these four numbers formatted this way? Note that a "line feed" character is required at the end of each line and that spaces and commas also need to be transmitted.

How many bytes are required to transmit these four numbers if they are transmitted, one after another, if each is encoded as a 16bit number? What if each number was encoded as a 32 -bit number? We need 10 characters (bytes
as a text
rSV) file.

$$
\begin{aligned}
& 2 \text { bytes } / \text { number } \cdot 4 \text { numbers }=8 \text { bytes. } \\
& 3
\end{aligned}
$$

