Data Transmission over Bandlimited Channels

Exercise 1: Draw a square pulse of duration T and amplitude 1. Draw the output if the channel stretches pulses to a duration of 1.5T. Draw the output for an input pulse of the opposite polarity. Use the principle of superposition to draw the output of the channel for a positive input pulse followed by a negative input pulse. Has the signal been distorted?

Exercise 2: What is the impulse response of a channel that does not alter its input? Does this impulse response meet the Nyquist condition? Will it result in ISI?

Exercise 3: Draw the impulse response of a channel that meets the Nyquist condition but is composed of straight lines. Note that there are many such impulse responses.

Exercise 4: What causes the sinc() function to have periodic zero-crossings? What causes the amplitude to decay? $t = \frac{1}{t}$ $t = \frac{1}{t}$

Exercise 5: Draw the magnitude of a raised-cosine transfer function that would allow transmission of impulses at a rate of 800 kHz with no interference between the impulses. QOOKH2.

Exercise 6: Draw the impulse response of a filter than converts input impulses to pulses of duration T? Draw the signal after the pulse-shaping filter in the diagram above.

Exercise 7: A "brickwall" channel has a 3 kHz bandwidth and meets the Nyquist non-ISI conditions. How many levels are required to transmit 24 kb/s over this channel using multi-level signalling?

$$\frac{24kb/S}{3kH_z}$$

$$\frac{6000 \text{ symbols}/S}{6000 \text{ symbol}} = 4b/\text{sym.} \text{ Par symbol.}$$

$$\text{ned bits } \left(\frac{2400b/S}{6000 \text{ sym/s}} = 4b/\text{sym.}\right) \text{ Par symbol.}$$

$$\text{ned log}_{2}(n) = 4$$

$$\text{n} = 2^4 = 16 \text{ lax(S-}$$

Exercise 8: The 802.11g WLAN standard uses OFDM with a sampling rate of 20 MHz, with N=64 and guard interval of $0.8\mu s$. What is the total duration of each OFDM block, including the guard interval? How long is the guard time?

BEQ

$$N = 64$$
 samples at $20 MH_2 + 0.8 \mu s$. [11] [1] [850n;2]

 $\frac{1}{20 \times 10^6} = 50 n s$.

 $64.50 = 3.2 \mu s + 0.8 \mu s = 4 \mu s$.

Exercise 9: What is capacity of a binary channel with a BER of $\frac{1}{8}$ (assuming the same BER for 0's and 1's)? *Hint*: $\log_2(\frac{7}{8}) \approx -0.2$.

$$C = 1 - (-p \log_2 p - (1 - p) \log_2 (1 - p))$$

$$C = \left[- \left(-\frac{1}{8} \log_2 \frac{1}{8} - \left(1 - \frac{1}{8} \right) \log_2 \left(1 - \frac{1}{8} \right) \right]$$

$$= \left[- \left(\frac{3}{8} + \frac{1.4}{8} \right) - \left[- \frac{4.4}{8} \right] = \frac{3.6}{8}$$

Exercise 10: What is the channel capacity of a 4 kHz channel with an SNR of 30dB?

The channel capacity of a 4 kHz channel with
$$30 = 10 \log_{10} (\frac{5}{N})$$

$$C = B \log_{2} (1 + \frac{5}{N})$$

$$= 4000 \log_{2} (1 + 1000)$$

$$= 4000 \cdot 10$$

$$= 40,000$$

Exercise 11: Can we use compression to transmit information faster than the (Shannon) capacity of a channel? To transmit data faster than capacity? Explain.

Information -> vote after best possible compression > (30 exceed Shanon capacity (e.g w/ coding) data

Exercise 12: What do the Nyquist no-ISI criteria and the Shannon Capacity Theorem limit? What channel parameters determine these limits?