
ELEX 3525: Data Communications
2022 Fall Term

Polynomials inGF(2) andCRCs

This chapter covers arithmetic with polynomials that have coefficients from GF(2). These operations are the basis of many
useful telecommunications functions including computation of cyclic redundancy checks (CRCs).
After this chapter you should be able to: represent a sequence of bits as a polynomial with coefficients from GF(2), compute
the result of multiplying a polynomial by 𝑥𝑛, compute the result of dividing two polynomials, compute the value of a CRC
given the message and generator polynomials, and determine if a CRC computation indicates an error has occurred. You
should be able to determine if a CRC is guaranteed to detect a particular error sequence.

GF(2)

A Galois field, denoted as 𝐺𝐹(𝑞), is a set of integers
and two operations that have certain properties. One
of theproperties is closure– the resultof anyoperation
on two elements of the field is also in the field.
For example, 𝐺𝐹(2) includes two integers (0 and

1) and the addition andmultiplication operations are
defined as addition andmultiplicationwith the result
takenmodulo-2.
Exercise 1: Write the addition andmultiplication tables for𝐺𝐹(2).
What logic function can be used to implement modulo‑2 addition?
Modulo‑2multiplication?
Exercise 2: What are the possible values of the results if we
used values 0 and 1 but the regular definitions of addition and
multiplication? Would this be a field?

RepresentingCodewords as Polynomials

Thus far we’ve represented codewords as sequences
of bits. We can also represent codewords as polyno-
mials with coefficients from 𝐺𝐹(2). For example, the
polynomial:

1𝑥3 + 0𝑥2 + 1𝑥1 + 1𝑥0 = 𝑥3 + 𝑥1 + 1
can be used to represent the codeword 1011.
Exercise 3: What is the polynomial representation of the codeword
01101?
Polynomials are used to describe codes because

many properties of codes can be derived from the
mathematical properties of polynomials.
Note that it is the coefficientsof thepolynomial that

are important. The polynomial itself is never evalu-
atedandthevariable𝑥 thatappears inthesepolynomi-
als is just a dummy variable. These polynomials can
thus also be viewed as binary numbers or bit strings
where theorderofeach termindicates thebitposition.

Polynomial Arithmetic

We can add, subtract, multiply and divide polyno-
mials with coefficients in GF(2). These operations
are the basis for many useful communication-related
functions including convolutional codes for FEC
(Forward Error Correction), CRCs (Cyclic Redun-
dancy Checks), and PRBS (Pseudo-Random Bit
Sequence) generators.
Exercise 4: What is the result of multiplying 𝑥2 + 1 by 𝑥3 + 𝑥 if
the coefficients are regular integers? If the coefficients are values in
𝐺𝐹(2)? Which result can be represented as a bit sequence?

Digital Implementation of Polynomial Arithmetic

Arithmetic on polynomials with 𝐺𝐹(2) coefficients
can be implementedwith simple digital logic circuits.
Flip-flops, organized as shift registers, store the bits
of the message (coefficients equal to 1 or 0) and
XOR and AND gates are used to compute modulo-2
addition and multiplication. The bits corresponding
to codeword(s)/message(s) can be input and output
sequentially, bit by bit, into thepolynomial arithmetic
circuits.
It’smuch simpler to do arithmetic using polynomi-

als inGF(2) thanusing regular integers becausewedo
not need to compute carries when computing results.

Cyclic RedundancyChecks

A Cyclic Redundancy Check (CRC) is a code used to
detect errors in a sequence of 𝑘 data bits. A “code-
word” of 𝑛 bits is transmitted for each 𝑘 data bits. The
length of the CRC is thus 𝑛 − 𝑘:

R�OO

R

HEXE '6'

The algorithm used to compute the CRC is as
follows:

lec7.tex 1 2022-10-27 23:01



The data to be transmitted, treated as a polynomial,
is multiplied by the polynomial 𝑥𝑛−𝑘. This increases
the order of each term by 𝑛 − 𝑘 (or equivalently,
appends𝑛−𝑘 zero bits). This newpolynomial,𝑀(𝑥),
is divided by a generator polynomial, 𝐺(𝑥)1. The
result is a quotient and a remainder:

𝑀(𝑥)
𝐺(𝑥) = 𝑄(𝑥) remainder𝑅(𝑥)

We then replace the last 𝑛 − 𝑘 bits of𝑀(𝑥) (which
were zero due to us having multiplied by 𝑥𝑛−𝑘) with
𝑅(𝑥). This isequivalent toadding(orsubtractingsince
polynomial addition and subtraction are the same for
coefficients in GF(2)) 𝑅(𝑥) from𝑀(𝑥). This ensures
that the new polynomial will be divisible by𝐺(𝑥).
Note that𝑛−𝑘 is one less than thenumber of terms

in 𝐺(𝑥) since the remainder is always less then the
divisor. Ifwenumber the termsby the order of𝑥, then
the highest order term in the remainder will be 𝑥𝑛−𝑘.
The receiver carries out the same polynomial

division operation on the combination of themessage
bits and CRC. If the remainder is not zero then the
received polynomial is not a multiple of 𝐺(𝑥) and
so at least one of the bits must have changed and an
error has been detected.

Detecting Added/Deleted ZeroBits

We can add or remove any number of leading zeros
coefficients to 𝑀(𝑥) without affecting its value or
the CRC. To allow the CRC to detect missing/added
leading zero bits, some implementations require that
some initial data bits (typically the first 𝑛 − 𝑘) be
complemented before computing the CRC.
Similarly, appending or deleting zeros to the end

of the message will also result in a zero remainder.
We can avoid this problem by complementing the
CRC before sending it. This generates a non-zero
remainder but the value will be a specific value (the
same for all messages) if there are no errors.
Anotherway todetectmissing/added leading/trail-

ing zero bits is to include the length of themessage in
the CRC computation.

Computing theCRC

Computing the CRC requires polynomial division.
The process involves repeated subtraction of the
generator polynomial from the message polynomial.

1Generator polynomials “generate” other codewords, in this
case the CRC.

Unlike regular division, to compute the CRCwe only
need to compute the remainder.
Exercise 5: If the generator polynomial is 𝐺(𝑥) = 𝑥3 + 𝑥 + 1
and thedata tobeprotected is 1001,what are𝑛−𝑘,𝑀(𝑥) and the
CRC? Check your result. Invert the last bit of the CRC and compute
the remainder again.

Checking theCRC

At the receiver the same circuit can be used to divide
the received message and the appended remainder
polynomial by the generator polynomial. If the
remainder is zero then the received polynomial must
be a multiple of the generator polynomial. This is
always the case when we subtract the remainder
𝑅(𝑥) from the message polynomial. Therefore if the
remainder in the SR is non-zero then theremust have
been an error.

CRCError DetectionPerformance

CRC error detection will fail only if the error pattern
is amultiple of𝐺(𝑥).
If all the errors are located within an “error burst”

of length 𝑛 − 𝑘 then the error pattern cannot be a
multiple of 𝐺(𝑥) and is guaranteed to be detected.
However, the CRCwill also detect most longer bursts
since they are unlikely to be amultiple of𝐺(𝑥).
Exercise 6: Is a 32‑bit CRC guaranteed to detect 30 consecutive
errors? Howabout30errorsevenlydistributedwithin themessage?
A common situation is where the received bits

are completely random (e.g. noise being detected as
data). In this case the probability of not detecting an
error is the probability that a random sequence of
𝑛 − 𝑘 bits matches the required checksum.
Exercise 7: What is the probability that a CRC of length𝑛 − 𝑘 bits
will be the correctCRC for a randomly‑chosencodeword? Assuming
random data, what is the undetected error probability for a 16‑bit
CRC? For a 32‑bit CRC?

StandardCRCGenerator Polynomials

There are several CRC generator polynomials in
common use. The most common lengths are 16 and
32 bits since these are multiples of 8 bits. All(?) IEEE
802 standards use the same 32-bit CRC polynomial
typically called “CRC-32”. The ITU has defined a
16-bit CRC generator polynomial (“CRC-16-CCITT”)
that is also used in various standards.

2


	GF(2) 
	Representing Codewords as Polynomials 
	Polynomial Arithmetic 
	Digital Implementation of Polynomial Arithmetic 
	Cyclic Redundancy Checks 
	Computing the CRC 
	Checking the CRC 
	CRC Error Detection Performance 
	Standard CRC Generator Polynomials 

