Polynomials in GF(2) and ORCs
Exercise 1: Write the addition and multiplication tables for $G F(2)$. What logic function can be used to implement modulo-2 addition? Modulo-2 multiplication?

x	0	1	
0	0	0	
1	0	1	\quad AND

Exercise 2: What are the possible values of the results if we used values 0 and 1 but the regular definitions of addition and multiplication? Would this be a field?

$$
\text { if } 1+1=2 \quad \therefore \text { not a field }
$$

^ not one of the allowed values

Exercise 3: What is the polynomial representation of the codeword 01101?

$$
0 x^{4}+1 x^{3}+1 x^{2}+0 x^{1}+1 x^{0}
$$

Exercise 4: What is the result of multiplying $x^{2}+1$ by $x^{3}+x$ if the coefficients are regular integers? If the coefficients are values in $G F(2)$? Which result can be represented as a bit sequence?

$$
x^{2}+1
$$

$$
x^{3}+x
$$

$$
1 x^{3} \quad x
$$

$$
x^{5} 1 x^{3}
$$

$$
x^{5}+0 x^{3}+x \equiv 1 x^{5}+0 x^{4}+0 x^{3}+0 x^{2}
$$

$$
2 x^{3}
$$

$$
+1 x+0 x^{0}
$$

$$
\text { or: } 100010
$$

were regular integers

Exercise 5: If the generator polynomial is $G(x)=x^{3}+x+1$ and the data to be protected is 1001 , what are $n-k, M(x)$ and the CRC? Check your result. Invert the last bit of the CRC and compute the remainder again.

$$
\begin{aligned}
& \mid 001 \equiv 1 x^{3}+0 x^{2}+0 x+1 x^{0} \\
& G(x)=1 x^{3}+0 x^{2}+1 x+1 x^{0} \equiv 1011
\end{aligned}
$$

$$
n-k=3 \text { (part ybits, one less than \#bits in } 6(x) \text {) }
$$

$$
n-k=0) x^{3}
$$

$$
M(x)=\left(1 x^{3}+0 x^{2}+0 x^{1}+1 x^{0}\right) x^{3}
$$

$$
=1 x^{6}+0 x^{5}+0 x^{4}+1 x^{3}+0 x^{2}+0 x^{1}+0 x^{0}
$$

$$
\begin{aligned}
& G(X) \\
& \left(x^{3}+0 x^{2}+x+1\right) \frac{x^{3}+0 x^{2}+1 x}{1 x^{6}+0 x^{5}+0 x^{4}+1 x^{3}+0 x^{2}+0 x^{1}+0 x^{0}} \\
& 1 x^{6}+0 x^{5}+1 x^{4}+1 x^{3} \downarrow
\end{aligned} 0 x^{5}+1 x^{4}+0 x^{3}+0 x^{2}
$$

Using only the coefficients:
check.

add an error \& check again:

$1001110 \longleftarrow$ original polymemal
1011
\leftarrow error polynomial

$$
=G(x) \cdot x^{3}
$$

no remainder: CRC incorrectly indicates no error
example where error polynomial is a multiple of $G(x)=G(x) x^{3}+G(x)=G(x)\left(x^{3}+1\right)$

$$
\begin{aligned}
& \left.+\frac{1011}{1011}\right\} \\
& +\begin{array}{l}
1010011 \leftarrow \text { error } \\
1001110<\text { original } \\
\downarrow
\end{array} \frac{0011101 \leftarrow \text { received }}{00111} \downarrow 1
\end{aligned}
$$

Exercise 6: Is a 32-bit CRC guaranteed to detect 30 consecutive errors? How about 30 errors evenly distributed within the message?

$$
\text { Y os } 30 \text { is on eur burst length }<n-k \text { (} 32 \text {). }
$$

No. the errors could be a multiple of the generator polynomial.

Exercise 7: What is the probability that a CRC of length $n-k$ bits will be the correct CRC for a randomly-chosen codeword? Assuming random data, what is the undetected error probability for a 16-bit CRC? For a 32-bit CRC?

