PN Sequences and Scramblers

Exercise 1: How many bits are there in an m-sequence for m = 6? How many are 1's? How many are 0's?

$$2^{M} - 1 = 2^{G} - 1 = 63$$

 $2^{M-1} - 1 = 31 \text{ zeros}$
 $2^{M-1} = 32 \text{ ones.}$

Exercise 2: If the initial value of each flip-flop is 1, what are the values of the next 4 bits output by the right-most flip-flop?

Exercise 3: How many flip-flops would be required to generate a ML PRBS of period 8191? How many ones would the sequence have? What is the longest sequence of 0's?

$$8191 = 2^{m} - 1$$

 $8192 = 2^{m}$
 $m = \log_2(8192) = 13$
 $2^{13-1} = 2^{12} = 4096$
 $\log_2 t = 4096$
 $\log_2 t = 12 \text{ bits}$

Exercise 4: Why not? The descrambling procedure 13 Known.

Exercise 5: How many errors will appear in the output of a V.34 descrambler if there is one input error?

Exercise 6: In the diagram above, what two signals would the receiver compare to detect errors?

