

Framing

Exercise 1: Draw the waveform for an AMI-RZ encoded sequence of bits '011011' assuming the previous mark was transmitted as a positive pulse. Draw the waveform assuming the second '1' indicates the start of a frame.

Exercise 2: You receive the sequence of bits 01110110 and are told that bit stuffing was used to limit runs of 1 to three or fewer. What was the original data sequence?

Exercise 3: Write out the complete sequence of 1's and 0's required to transmit the 12 bits 0110 1111 1100. Include the start and end flag sequences and any necessary bit stuffing. Assume bits are transmitted lsb-first.

if the 12 bits are a word: 1sb-first 00 111111 0110

12 bits are a sequence of bits: 0110 1111 1100

0111110 00111110 1 0110 0111110 = 1sb first

0111110 011011110 1 000 0111110 = bit sequence

staffer bits

Exercise 4: An HDLC receiver sees the sequence 1000 0111 1110 1111 1001 0111 1110,0110. What data bits were contained within the frame? 1 with flag frame.

Exercise 5: In this case, by how much does the use of escape characters slow down a link transmitting a continuous stream of escape characters?

by I because each escape is transmitted as 2 bytes.

Exercise 6: What sequence of bytes would be sent to transmit a PPP-encapsulated frame containing the bytes 0xff 0x03 0x7d 0x1b 0x7e?

7e = flag charater

7d = esc. char.

1b = Aseil Esc characters (not special for PPP)

1e ff 03 7d 7d 1b 7d 7e 7e

5lag 1esc. char. Plag alon flag.

(start 5d) 5e (ana)

PPP frame

XOR escaped 01111101 7d

byle with 0x20 5 d

Exercise 7: Preambles such as this allow multiple transmission formats to be used in a backwards-compatible way. What might be some disadvantages of using such a preamble? *Hint: to be decoded by old ("legacy") devices the preamble must be transmitted at the lowest possible data rate. This can be 100 times slower than the fastest devices.*

overhead of backwards compostibility.

Exercise 8: A physical layer transmits 3 bits per symbol. A frame of 128 bytes is being transmitted. How many padding bits will have to be added to the frame?

3, 6, 7, ... boits
$$\frac{128.8 = 1024 \text{ bits}}{3 \frac{1024}{5 \text{ bit/symbol}}} = 341/3 \text{ symbols}$$

$$\text{round up to } 342 \text{ symbols}$$

$$\text{need} \qquad (342 - 341/3) \times 3 \text{ poddyn bits}$$

$$\text{or } 342 \times 3 \text{ bits} - 1024 = 2 \text{ poddif}$$

$$\text{bits}$$

$$\text{needed}$$