Introduction to Digital Communication
Exercise 1: Give an example of a communication network. What are the information source and sink? What channels does it operate over? What transmitters and receivers do you think are used on each channel?
Am ~

chemise. Wireless freespace

Exercise 2: Speech is intelligible even if only frequencies below about 4 kHz are transmitted. What is the minimum sampling rate that should be used to sample speech if we first remove frequencies above 4 kHz ?

$$
\begin{aligned}
f_{s} & \geqslant 2 f_{m a x} \\
& \geqslant 2 \cdot 4 \mathrm{kHz} \\
& \geqslant 8 \mathrm{kHz}
\end{aligned}
$$

Exercise 3: A signal-to-noise power ratio of about 48 dB is considred "toll quality" (the SNR conventional telephone networks provide). How many bits per sample are required to obtain a quantizatimon SNR equivalent to "toll quality" speech?

$$
\begin{aligned}
& \operatorname{SUR}_{\text {quant }} \cong 6 B \quad d B \\
& 48 d B=6 B \\
& B=\frac{48}{6}=8 \text { bits }
\end{aligned}
$$

Exercise 4：What if the signal was a video signal with a 5 MHz band－ width and required a quantization SNR of 40 dB ？

$$
\begin{aligned}
f_{S} & \geqslant 2 \cdot 5 \mathrm{MHz} \\
& \geqslant 10 \mathrm{MHz} \\
B(b, t s) & =\frac{40 \mathrm{~dB}}{6}=6 \frac{2}{3}
\end{aligned}
$$

in 3525 ＂basehond＂signal

in 3521 ＂possband＂signal

Exercise 5：How many bits per second need to be transmitted in these two examples？

$$
f_{s}\left(\frac{\text { samples }}{s}\right) \times B\left(\frac{\text { bits }}{\text { sample }}\right)=\frac{\text { bits }}{s} .
$$

间気目日目
\＃1） $8 \mathrm{kHz} \cdot 8 \mathrm{bits} /$ sonple $=64 \mathrm{~kb} / \mathrm{s}$

$$
\text { *2) } \quad 10 \mathrm{MHz} \cdot 7 \mathrm{bits} / \mathrm{simpe}=70 \mathrm{mb} / \mathrm{s} \text {. }
$$

Exercise 6: Write the sequence of bits that would be transmitted if the 16-bit value 525 was transmitted with the bytes in little-endian order and the bits Isb-first. Write the sequence of bits that would be transmitted in "network order" and the bits msb-first.

$$
525_{10} \Rightarrow 020 D_{16} \Rightarrow \underbrace{00000010}_{\substack{\operatorname{secosh} \\(\mu S B)}} \underbrace{00001101}_{\substack{\text { first } \\(L S B)}}
$$

$$
\Rightarrow 10110000 \quad 01000000<\underbrace{\substack{\begin{subarray}{c}{\text { little endion } \\
\text { isp first }} }} \\
{00001101}}_{\begin{array}{c}
\text { fist } \\
(L S B)
\end{array}} \underbrace{00000010}_{\left.\begin{array}{c}
\text { secund } \\
M S B)
\end{array}\right\} \begin{array}{c}
\text { network } \\
\text { order }
\end{array}}
$$

$\Rightarrow \quad 0000001000001101$

Exercise 7: How many bits would be required to uniquely identify 100,000 different characters? (Hint: $2^{16}=65536$).

$$
\text { Need } 17\left(2^{17}=1286\right) .
$$

Exercise 8: The Chinese character for "Rice" (the grain) is 米 with Unicode value (code point) U+7C73. What is the UTF-8 encoding for this character?

Scalar Value	First Byte	Second Byte	Third Byte	Fourth Byte
00000000 0xxxxxxx	0xxxxxxx			
00000yyy yyxxxxxx	110yyyyy	10xxxxxx		
zzzzyyyy yyxxxxxx	$1110 z z z z$	10yyyyyy	10xxxxxx	
000uuuuu zzzzyyyy yyxxxxxx	11110uuu	10uuzzzz	10yyyyyy	10xxxxxx

Exercise 9: Convert the decimal number 525 to a 16-bit (two-byte) binary number. How would you write this in hexadecimal notation?

Find the ASCII codes for the characters '525'. Write out the bits of the sequence that would be transmitted assuming each character is encoded in UTF-8. Hint: the UTF-8 character code for a digit is 0×30 plus the value of the digit.

Which of these two sequences of bits is the text format and which is the binary format? How many more bits would need to be stored or transmitted for the text format?

$$
\begin{aligned}
& 525=0 \times 020 D \\
& 000000100000110116 \text { bits } \\
& 15^{\prime}, 2^{\prime}, ' 5^{\prime} \Rightarrow 0 \times 35 \text { 0.32 0×35 } \rightarrow \text { from Asl (or Unicode) } \\
& \text { (5]2] } 24 \text { bits } \rightarrow \text { text }
\end{aligned}
$$

24 bits to ter
16 bite for bind

Exercise 10: We observe a source that outputs letters. Out of 10,000 letters 1200 were ' E '. What would be a reasonable estimate of the probability of the letter ' E '?

$$
\frac{1200}{10000}=12 \% \equiv 0.12
$$

$P_{0} \quad P_{1} \quad P_{2} \quad P_{3}=?$
Exercise 11: A source generates four different messages. The first three have probabilities $0.125,0.125,0.25$. What is the probability of the fourth message? How much information is transmitted by each message? What is the entropy of the source? What is the average information rate if 100 messages are generated every second? What if there were four equally-likely messages?

$$
\begin{aligned}
& P_{3}=1-\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{4}\right)=1-\frac{1}{2}=\frac{1}{2} \\
& P_{0}=P_{1} \quad I_{0}=I_{1}=-\log _{2}\left(\frac{1}{8}\right)=-(-3)=3 \text { bits } \\
& P_{2}=-\log _{2}\left(\frac{1}{4}\right)=2 \text { bits } \\
& P_{3}= \\
& \quad-\log _{2}\left(\frac{1}{2}\right)=1 \text { bit } \\
& H=\bar{I}=\sum P_{i} I_{i} \\
&= \frac{1}{8} \cdot(3)+\frac{1}{8}(3)+\frac{1}{4} \cdot(2)+\frac{1}{2}(1) \\
&= \frac{3}{8}+\frac{3}{8}+\frac{4}{8}+\frac{4}{8}=\frac{14}{8}=1 \frac{6}{8}=1.75 \mathrm{bit} / \mathrm{msg}
\end{aligned}
$$

egg 1000 messages has $1.75 \times 1000=1750$ bits of information.

If $100 \mathrm{msg} / \mathrm{second} \Rightarrow 100 \frac{\mathrm{mgg}}{\mathrm{s}} \cdot 1.75 \frac{\mathrm{bits}}{\mathrm{msg}}=175 \mathrm{pps}$
if all equally likely then $f=\sum_{i=0}^{3} \frac{1}{4} \cdot 2=2$ bits

$$
k=10^{3}
$$

Exercise 12: How long will it take to transfer 1 MByte at a rate of $10 \mathrm{~kb} / \mathrm{s}$?

$$
\begin{aligned}
& \text { e. then } \frac{1 \times 2^{20} \times 8}{10 \times 10^{3}} \quad \text { or } \frac{1 \times 10^{6} \text { Byk } \times 8 \frac{\text { bits }}{\text { Byte }}}{10 \times 10^{3} \mathrm{bith} / \mathrm{s}} \\
&=800 \mathrm{~s} .
\end{aligned}
$$

Exercise 8: The Chinese character for "Rice" (the grain) is 米 with Unicode value (code point) U+7C73. What is the UTF-8 encoding for this character?

$$
\underbrace{7 c 73}_{z} \underbrace{0111}_{y} \underbrace{1160 \text { oI }}_{\text {Table 3-6. UTF-8 B }}
$$

Scalar Value	First Byte	Second Byte	Third Byte	Fourth Byte
00000000 0xxxxxxx	0xxxxxxx			
00000yyy yyxxxxxx	110yyyyy	10xxxxxx		
zzzzyyyy yyxxxxx	1110zzzz	10yyyyyy	10xxxxxx	
000uyuuu zzzzyyyy yyxxxxxx	$11110 u u u$	$10 u u z z z z$	$10 y y y y y y$	$10 x x x x x x$

$$
x \rightarrow 1 \mathrm{~kg} \quad 2 \mathrm{kj}
$$

$$
\begin{array}{lll}
x \rightarrow 1 \mathrm{~kg} & 2 \mathrm{kj} & 3 \mathrm{~kg} \\
p \rightarrow 30 \% & 10 \% & (100 \%-(30+10) \%)=60 \%
\end{array}
$$

$$
\text { mean }=\sum x_{i} p_{i}=1 \cdot 0.3+2 \cdot 0.1+3 \cdot 0.6
$$

$$
=0.3+0.2+1.8
$$

$$
=2.3
$$

Exercise 9: Convert the decimal number 525 to a 16-bit (two-byte) binary number. How would you write this in hexadecimal notation?

Find the ASCII codes for the characters ' 525 '. Write out the bits of the sequence that would be transmitted assuming each character is encoded in UTF-8. Hint: the UTF-8 character code for a digit is 0×30 plus the value of the digit.

Which of these two sequences of bits is the text format and which is the binary format? How many more bits would need to be stored or transmitted for the text format?

$$
\begin{aligned}
525= & 0 \times 020 D \\
& 0000001000001101
\end{aligned}
$$

$$
1 S^{\prime},,^{\prime}, ' 5^{\prime} \Rightarrow 0 \times 35 \text { ox } 32 \text { ox 35 } \rightarrow \text { from Ascll (or Unicode) }
$$

523

$$
24 \text { bits } \rightarrow \text { text }
$$

24 bits for ter
16 bits for bine
8 mar bit

Exercise 10: We observe a source that outputs letters. Out of 10,000 letters 1200 were ' E '. What would be a reasonable estimate of the probability of the letter ' E '?

$$
\frac{1200}{10000}=12 \% \equiv 0.12
$$

$\begin{array}{llll}P_{0} & P_{1} & P_{2} & P_{3}=?\end{array}$
Exercise 11: A source generates four different messages. The first three have probabilities $0.125,0.125,0.25$. What is the probability of the fourth message? How much information is transmitted by each message? What is the entropy of the source? What is the average information rate if 100 messages are generated every second? What if there were four equally-likely messages?

$$
\begin{aligned}
& P_{3}=1-\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{4}\right)=1-\frac{1}{2}=\frac{1}{2} \\
& P_{0}=P_{1} \quad I_{0}=I_{1}=-\log _{2}\left(\frac{1}{8}\right)=-(-3)=3 \text { bits } \\
& P_{2}= \quad-\log _{2}\left(\frac{1}{4}\right)=2 \text { bits } \\
& P_{3}= \\
& \quad-\log _{2}\left(\frac{1}{2}\right)=1 \text { bit } \\
& H=\bar{I}=\sum P_{i} I_{i} \\
&= \frac{1}{8} \cdot(3)+\frac{1}{8}(3)+\frac{1}{4} \cdot(2)+\frac{1}{2}(1) \\
&= \frac{3}{8}+\frac{3}{8}+\frac{4}{8}+\frac{4}{8}=\frac{14}{8}=1 \frac{6}{8}=1.75 \mathrm{bit} / \mathrm{msg}
\end{aligned}
$$

egg 1000 messages has $1.75 \times 1000=1750$ bits

If $100 \mathrm{msg} / \mathrm{second} \Rightarrow 100 \frac{\mathrm{msg}}{\mathrm{s}} \cdot 1.75 \frac{\mathrm{bits}}{\mathrm{mgg}}=175 \mathrm{pps}$
if cal equally likely

$$
\text { the } f=\sum_{i=0}^{3} \frac{1}{4} \cdot 2=2 \text { bits }
$$

$$
k=10^{3}
$$

Exercise 12: How long will it take to transfer 1 MByte at a rate of $10 \mathrm{~kb} / \mathrm{s}$? 16×10^{3}

$$
\frac{1 \times 2^{20} \times 8}{10 \times 10^{3}} \text { or } \frac{1 \times 10^{6_{\text {By }} \times 8 \frac{\text { bits }}{\text { Byte }}}}{10 \times 10^{3} \mathrm{bit} / \mathrm{s}}
$$

Exercise 13: A communication system transmits one of the sym= 800 s . boll above each microsecond. The probability of each symbol being transmitted is given above each symbol. What are the bit rate, the symbol rate, the information rate and the baud rate?

\# symbls

$$
\begin{aligned}
& \text { bit rate }=\frac{2 \text { bits }}{1 \times 10^{-6} \mathrm{~s}}=2 \mathrm{Mb} / \mathrm{s} \\
& \left(2 b_{1} t_{s}=\log _{2} M^{\downarrow}\right. \\
& =\log _{2} 4=2 \text {) } \\
& \text { symbol) rate }=\frac{\mid \text { symbol } \mid}{1 \times 10^{-6}}=1 \mathrm{MHz} \\
& \text { information rate }=\sum I_{i} P_{i} \\
& =-\log _{2}(0.4) \cdot 0.4-\log _{2}(0.3) \cdot 0.3-\log _{2}(0.2) 0.2 \\
& -\log _{2}(0.1) 0.1=
\end{aligned}
$$

$$
\text { baud rte }=\frac{1}{0.5 \times 10^{-6} \mathrm{~s}}=2 \mathrm{MHz}
$$

Exercise 14: Another system, as shown above, encodes each bit using two pulses of opposite polarity (H-L for 0 and L-H for 1). A second system encodes bits using one pulse per bit (H for 0 and L for 1). A third system encodes two bits per pulse by using four different pulse levels (-3 V for $00,-1 \mathrm{~V}$ for $01,+1 \mathrm{~V}$ for 10 and +3 V for 11). Assuming each system transmits at 1000 bits per second, what are the baud rates in each case? How many different symbols are used by each system? What are the symbol rates? Assuming each symbol is equally likely, what are the information rates?

information rate $1000\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 1\right)=1000 \quad 1000 \quad 500\left(4 \cdot \frac{1}{4} \cdot 2\right)=1000$ bits $/ \mathrm{s}$

Exercise 15: You receive 1 million frames, each of which contains 100 bits. By comparing the received frames to the transmitted ones you find that 56 frames had errors. Of these, 40 frames had one bit in error, 15 had two bit errors and one had three errors. What was the FER? The BER?

$$
\begin{aligned}
& F E R=\frac{56}{10^{6}}=56 \times 10^{-6} \\
& B E R=\frac{40 \times 1+15 \times 2+1 \times 3}{100 \times 10^{6}}=73 \times 10^{-8}
\end{aligned}
$$

Exercise 16: A system transmits data at an (instantaneous) rate of $1 \mathrm{Mb} / \mathrm{s}$ in frames of 256 bytes. 200 of these bytes are data and the rest are overhead. The time available for transmission over the channel is shared equally between four users. A $200 \mu \mathrm{~s}$ gap must be left between each packet. What throughput does each user see? Now assume 10% of the frames are lost due to errors. What is the new throughput per user?

$$
200 \times 8=1600 \text { pits }
$$

$$
\begin{gathered}
8992 \mathrm{\mu s} \\
\text { through pot }=\frac{1600}{8992 \times 10^{-6}}=178 \mathrm{~kb} / \mathrm{s} .
\end{gathered}
$$

Lets 16ok@100 of these
haw throughput $=90 \%_{0} \cdot 100 \cdot(600$ bits

$$
100 \% \cdot 100 \cdot 8992 \times 10^{-6}
$$

Exercise 17: Plot some sample data rate versus time curves for these three types of sources. Can you think of some characteristics of a video source that might result in a variable bit rate when it is compressed? (Hint: what types of redundancy are there in video?)

Exercise 18: For each of the following communication systems identify the tolerance it is likely to have to errors and delay: a phone call between two people, "texting", downloading a computer program, streaming a video over a computer network. What do you think might be the maximum tolerable delay for each?

Exercise 19: Highlight or underline each term where it is defined in these lecture notes.

