Show your work and underline your final answer. Numeric answers must include units. Books, notes and calculators allowed. No other electronic devices allowed.

1. A system uses differential signalling over a wire pair. You connect two channels of an oscilloscope to measure the voltages on the two conductors. These are labelled $D+$ and D - (the differential voltage is positive when $D+$ is greater than $D-$). At one point in time $D+$ has a voltage of 3 V and $\mathrm{D}-$ has a voltage of 2 V . What are the common-mode and differential voltages at this time?
2. A communication system transmits data using four voltages: $-3 \mathrm{~V},-1 \mathrm{~V},+1 \mathrm{~V}$, and +3 V . The receiver uses three decision thresholds half-way between the voltages. The channel adds zero-mean Gaussian noise with a voltage of $0.43 \mathrm{~V}_{\mathrm{rms}}$.
(a) What is the average signal power, assuming a 1Ω resistance, if each of the four levels is equally probable? What is the noise power? What is the SNR in dB?
(b) What is the probability of (symbol) error if a level of +3 V is transmitted?

FLEX 3525 Quiz 3

Show your work and underline your final answer. Numeric answers must include units. Books, notes and calculators allowed. No other electronic devices allowed.

1. A system uses differential signalling over a wire pair. You connect two channels of an oscilloscope to measure the voltages on the two conductors. These are labelled $\mathrm{D}+$ and D - (the differential voltage is positive when $D+$ is greater than $D-$). At one point in time $D+$ has a voltage of 2 V and $\mathrm{D}-$ has a voltage of 1 V . What are the common-mode and differential voltages at this time?
2. A communication system transmits data using four voltages: $-3 \mathrm{~V},-1 \mathrm{~V},+1 \mathrm{~V}$, and +3 V . The receiver uses three decision thresholds half-way between the voltages. The channel adds zero-mean Gaussian noise with a voltage of $0.43 \mathrm{~V}_{\mathrm{rms}}$.
(a) What is the average signal power, assuming a 1Ω resistance, if each of the four levels is equally probable? What is the noise power? What is the SNR in dB?
(b) What is the probability of (symbol) error if a level of -3 V is transmitted?
