Show your work and underline your final answer. Numeric answers must include units. Books, notes and calculators allowed. No other electronic devices allowed.

1. You observe the following waveform being *output* on the RxD pin of an asynchronous ("RS-232") interface.

(a) What value was transmitted? Give your answer as a hexadecimal number.

$$0110[00] = 0x69$$

(b) What was the bit rate?

(c) Is this interface wired as a DTE or DCE? Explain (briefly) your choice.

on a DCE RXD is an output ... this post most be wired as a DCE,

2. You measure a noise signal with a DMM and find it has a DC voltage of 2 V and an AC (RMS) voltage of 3 V. Assuming the noise has a Gaussian distribution, what fraction of the time is the noise voltage negative (less than zero)?

normalized threshold =
$$t = \frac{0-M}{3} = \frac{0-2}{3} \approx -0.66$$

from graph in Leeture 3.
 $P(\text{noise} \leftarrow 0.66) \approx 25\%$

Show your work and underline your final answer. Numeric answers must include units. Books, notes and calculators allowed. No other electronic devices allowed.

1. You observe the following waveform being *output* on the TxD pin of an asynchronous ("RS-222") interface

(a) What value was transmitted? Give your answer as a hexadecimal number.

$$\frac{01101011}{6B} = \frac{0\times6B}{}$$

(b) What was the bit rate?

$$\frac{1}{52 \times 10^{-6}} \approx \frac{19,200 \text{ bps}}{1}$$

(c) Is this interface wired as a DTE or DCE? Explain (briefly) your choice.

on a DTE TXD is an output . . . this post most be wired as a DTE,

2. You measure a noise signal with a DMM and find it has a DC voltage of 1 V and an AC (RMS) voltage of 1.5 V. Assuming the noise has a Gaussian distribution, what fraction of the time is the noise voltage negative (less than zero)?

DC vo Hage is mean (average) = M = IV Ac(RMS) vo Hage is std. deviation = S = 1.5V P(voHage < V = QV)?

normalized threshold = $t = \frac{0-M}{\sigma} = \frac{0-1}{1.5} \approx -0.66$ from graph in Lecture 3. $P(\text{noise} \leftarrow 0.66) \approx 25\%$