Solutions to Quiz 1

Question 1

A signal has frequency components from 0 to 15 kHz . What is the minimum sampling rate that should be used?

The minimum sampling rate should be twice the highest frequency (or bandwidth for a bandpass signal). In this case it's $f_{s} \geq 2 \times 15=30 \mathrm{kHz}$.

Question 2

After quantizing a signal, the quantization SNR was found to be 60 dB . Approximately how many bits were used to quantize each sample?

The quantization SNR in dB is approximately given by $6 B$ where B is the number of bits. Thus $B=60 / 6=10$ bits.

Question 3

The value 0x1F7A (hexadecimal notation) is transmitted in little-endian byte order with the most-significant bit (msb) first. What are the first four bits transmitted?

If the bytes are transmitted in little-endian byte order the least-significant byte, 0x7, is transmitted first. In binary this is 0111 1010. If these bits are transmitted msb first, the first four bits transmitted are 0111.

Question 4

The Unicode code point for the CYRILLIC CAPITAL LETTER ZHE (Ж) is $U+0416$ (0x0416 in hexadecimal notation).

1. How many bytes would be transmitted if this character were encoded using UTF-8?
In binary the code point is 0000010000010110.

Since the most significant five bits are zero it can be UTF-8 encoded using the second row of the table with two (2) bytes.
2. What are the values of the ' x ', ' y ' and ' z ' bit fields defined in Table 3-6 "UTF-8 Bit Distribution" of the Unicode standard? Omit any fields that do not apply.
Referencing the field definitions, there are no z bits, $y=10000$, and $x=01 \sim 0110$.
3. What are the values of the bytes of the UTF-8 encoding in hexadecimal notation?

Referencing the encoding rules, the first byte is 11010000 or $0 x \mathrm{xD}$ and the second byte is 10010110 or 0x96.

Question 5

A communication system transmits three different messages with probabilities $0.25,0.5$ and 0.25 .

1. How many bits of information are transmitted by each message?
The number of bits of information in each message is given by $-\log _{2}(P)$. For the messages with $P=0.25=1 / 4, I=-\log _{2}(1 / 4)=2$ bits For those with $P=0.5=1 / 2, I=-\log _{2}(1 / 2)=$ 1 bits.
2. What is the entropy of this system in units of bits per message?
$H=0.25 \times 2+0.5 \times 1+0.25 \times 2=1.5$ bits $/$ message.
3. If the system transmits 10,000 messages per second, what is the information rate in bits per second?

The information rate is the product of the entropy and the message rate: $1.5 \times 10^{4}=$ 15000 bits/second

