Solutions to Midterm 1

Question 1

A communication system can transmit five different messages. Four of these are transmitted a probability of $1 / 8$. This system transmits each message using a 3bit word at a rate of 10,000 messages per second.

1. What is the entropy of this source in bits per message?

The entropy is given as:

$$
H=\sum_{i}-P_{i} \cdot \log _{2} P_{i}
$$

Since the probabilities have to add up to 1 and the probabilities of the first four messages add up to $4 \times 1 / 8=1 / 2$, the probability of the fifth message must be $1 / 2$. Thus the entropy is:
$4 \times \frac{-1}{8} \log _{2} \frac{1}{8}+\frac{-1}{2} \log _{2} \frac{1}{2}=\frac{4 \cdot 3}{8}+\frac{1 \cdot 1}{2}=\frac{16}{8}=2$ bits/message.
2. What is the information rate in bits per second?

The information rate is given by the message rate times the entropy or $10,000 \times 2=20 \mathrm{kbps}$.
3. What is the data rate in bits per second?

The data rate is the number of bits transmitted over the channel each second which is $10,000 \times$ $3=30 \mathrm{kbps}$.

Question 2

A Unicode character is encoded using UTF-8 as the three bytes (in hexadecimal): E3 81 AC

1. What are the values of the z, y and x bit fields as defined in Table 3-6 of the Unicode standard?
The three bytes in binary are:
```
E3 = 1110 0011
81 = 1000 0001
AC = 1010 1100
```

Table 3-6 defines the three-byte UTF-8 encoding as:

Scalar Value	First Byte	Second Byte	Third Byte
zzzzyyyy yyxxxxxx	$1110 z z z z$	$10 y y y y y y$	$10 x x x x x x$

From which we can extract the bits:
$z z z z=0011$
yyyyyy = 000001
xxxxxx = 101100
2. What is the Unicode code point of this character?

The code point is the scalar value in the table above. Combining the bits: 0011000001101100 or in hexadecimal, U+306C (ぬ, "Hiragana Letter Nu").

Question 3

The diagram above shows the outline of an RS-232 waveform. In the space below, write the voltages that would appear in each time interval if a byte with value 0×49 was transmitted using 8 bits per character and odd parity. The interval marked A is the start bit. For each letter B through K write the voltage for as H (for high, $>5 \mathrm{~V}$) or L (for low, $<-5 \mathrm{~V}$). Please ensure you answer is unambitguous (e.g. A:H, B:L, C:H, etc.):

[^0]- 0x49 in binary is 0100 1001. Writing the bits starting with the least-significant bit and converting 0 to H and 1 to L the sequence of eight transmitted values would be: LHHL HHLH.
- There are three ' 1 ' bits so the parity is already odd and so the parity bit should be $0(\mathrm{H})$.
- A stop bit is always low.
- The sequence of transmitted levels should thus be:
- A:H (start bit, given),
- B:L, C:H, D:H, E:L, (first four data bits, l.s. bit first)
- F:H, G:H, H:L, I:H, (second four data bits)
- J:H, (parity bit)
- K:L, (stop bit)

Question 4
The signal received by a receiver makes an error when the noise voltage is more negative than -1 V. The noise has a zero mean and an RMS value of 0.33 V . What is the error rate?

The noise has a mean of zero ($\mu=0$) and a standard deviation of $\sigma=0.33 \mathrm{~V}$. The normalised threshold is $t=\frac{-1-0}{0.33} \approx-3$. The probability that the noise voltage is less than (more negative than) this is $\mathrm{P}(-3)$ which can be found from the graph in lecture 3 as approximately 0.1% or using a calculator as $\approx 1.35 \times 10^{-3}$.

[^0]: - The start bit is always high and is given in the question.

