PN Sequences and Scramblers

After this chapter you should be able to: distinguish between random and pseudo-random signals, classify signals as PN, PRBS, and/or ML PRBS signals according to their quantization, periodicity, mean value and maximum run lengths, draw the schematic of a LFSR ML PRBS generator, explain two reasons why scrambling may be desirable, select between scrambling and encryption based on the need for secrecy, select between additive and multiplicative scramblers based on the availability of framing information, explain the error patterns resulting from erroneous input to a self-synchronizing scrambler, and implement (draw schematic of) additive scramblers and self-synchronizing multiplicative scramblers.

Random and Pseudo-Random Signals

A random signal is one whose value cannot be predicted. An example is the thermal noise generated by a resistor or transistor. Some statistics of the noise such as the power and spectrum may be known, but we can't predict the future voltage of the waveform.

It is sometimes useful to generate waveforms that have the same statistics as a truly random signal but whose values are predictable. These types of signals are called "pseudo-random" signals. If the pseudorandom signal is noise-like it's called a pseudo-noise (PN) signal, and if it's two-valued (0,1) it's called a pseudo-random bit sequence (PRBS).

So we have the following taxonomy of random signals:

PN and PRBS signals have many important applications in communications systems. In this chapter we will study the properties of a type of PRBS called a maximal-length (ML) sequence, learn how to generate these sequences and look at one of their applications - "scrambling." Other applications include the generation of test signals and spread-spectrum systems for communications and delay/distance measurements (e.g. GPS).

Properties of a ML PRBS

ML PRBS sequences, sometimes called m-sequences, have a number of useful properties including:

- a long period: the sequence is called maximumlength because the sequence has a period of (repeats after) $2^{m}-1$ bits where m is the number of bits of state in the generator. This is one less than the maximum number of states of an m-bit counter.
- an approximately equal number of 1's and 0 's: there are 2^{m-1} ones and $2^{m-1}-1$ zeros.
- the expected distribution of run lengths for independent bits: one-half of the runs ${ }^{1}$ have length 1 , one-quarter have length 2 , etc. (except that there is one run of length m ones and one of length $m-1$ zeros)
- low autocorrelation: the dot product of two time-shifted versions of the sequence is small except when the shift is zero.

Exercise 1: How many bits are there in an m-sequence for $m=$ 6 ? How many are 1 's? How many are 0's?

Generating a ML PRBS

A ML PRBS can be implemented using a shift register whose input is the modulo- 2 sum of other taps.

[^0]Exercise 2: If the initial value of each flip-flop is 1, what are the values of the next 4 bits output by the right-most flip-flop?

This is known as a linear-feedback shift register (LFSR) generator. The structure is similar to that used to compute the CRC. To obtain a maximallength sequence the generator polynomial (the taps) must represent a "primitive polynomial ${ }^{2}$ " of degree m.

If the contents of the shift register ever become all zero then all future values will be zero. This is why the generator has only $2^{m}-1$ states - the state corresponding to all zeros is not allowed.

Exercise 3: How many flip-flops would be required to generate a ML PRBS of period 8191? How many ones would the sequence have? What is the longest sequence of 0's?

Scrambling

Much real-world data contains repetitive (periodic) components. Examples include padding sequences transmitted when there is no data to be sent, digitized waveforms with periodic components (e.g. scan lines, or video frames), or repeated values (e.g. zeros) in a file being transmitted.

Two possible problems are introduced by these patterns in the data.

The most serious problem is that periodic components of a signal generate narrow-band (discrete) spectral components that have larger than average power. These discrete frequency components can cause interference (called "electro-magnetic interference", EMI) to wireless devices using the frequency that these components fall on.

The diagram below shows an example. The periodic component results in a discrete spectral component that would cause interference to a user of channel 1 . Scrambling distributes that power and reduces the peak power spectral density of the interference. Although the other channels see more interference power, they are all (hopefully) still usable.

[^1]

Prior to being marketed, all electronic devices must be tested to ensure such interference is below government regulatory limits. A device that fails such tests cannot be sold.

Another possible issue is that long sequences of certain values in random data may result in a signal that may not have enough transitions to allow for clock recovery.

To solve these problems most data communication standards specify a "scrambling" algorithm that must be used at the transmitter to remove periodicities and long constant sequences in the data. The receiver reverses this process to recover the original data. Two common types of scramblers are described below.
However, it is important to understand that a scrambling is not encryption and does not provide secrecy.
Exercise 4: Why not?

Frame-Synchronous Scramblers
The simplest type of scrambler consists of a ML PRBS generator whose output is exclusive-OR'ed with the data. These types of scramblers are called "additive" scramblers because the PN sequence is added, modulo-2, to the data (i.e. it is exclusive-or'ed with the data).

Since the scrambling sequence needs to be the same at the transmitter and receiver, this type of scrambler is only practical for systems that have a frame structure that can be used to synchronize the sequences. The state of the ML PRBS generator can be set to a specific value at the start of each frame. This value can be either a fixed value for every frame
or it can be an arbitrary (typically pseudo-random) value transmitted in the frame's preamble or header.

This type of scrambler is typically used on communication systems where each frame must be processed independently of others (e.g. WiFi).

Self-Synchronizing Scramblers

Some protocols operate on a continuous sequence of bits. A scrambler for such a system needs to synchronize the descrambler to the scrambler without any external information so it can recover from a loss of synchronization.

Self-synchronizing scramblers are sometimes called multiplicative scramblers because scrambling and descrambling are implemented using polynomial division and multiplication. The scrambled output, $S(x)$, is generated at the transmitter by dividing the data by a generator polynomial $G(x)$:

$$
S(x)=\frac{M(x)}{G(x)}
$$

and transmitting the quotient. The division operation is carried out bit-by-bit and each step of the division results in a new scrambled bit. The receiver de-scrambles the scrambled signal by multiplying by the same generator polynomial:

$$
M(x)=S(x) G(x)
$$

As shown in a previous lecture we can implement polynomial division and multiplication using shift registers and xor gates.

For example, the ITU-T V. 34 modem specification defines a self-synchronizing scrambler for calling mode that uses the generating polynomial: $G P C(x)=1+x^{-18}+x^{-23}$ (negative powers of x are used to indicate that more negative orders correspond to more-delayed bits). The scrambler and descrambler can be implemented as shown in the following figures (the numbers in boxes are delays, not polynomial order):

This type of scrambler is typically used on point-to-point links (e.g. Ethernet).

One problem with self-synchronizing scramblers is that an error in the received data pattern can result in multiple errors in the de-scrambled data. This is called error propagation.
Exercise 5: How many errors will appear in the output of a V. 34 descrambler if there is one input error?

Certain input sequences could set the scrambler state to zero and terminate the scrambling of long sequences of zero. Practical scramblers and descramblers count the number of consecutive ' 0 ' bits transmitted to detect this condition and invert the next bit.

PRBS Test Sequences

We can test a communication system by transmitting a PRBS sequence over the channel and comparing the received sequence to a locally-generated copy. Since the hardware to generate a very long ML-PRBS is very simple, it is practical to use long sequences for testing.

One problem that arises is how to synchronize the transmitter and a remote receiver. This can be done by loading the receiver PRBS generator's shift register with any m consecutive received bits. As long as there were no errors in these m bits then from that point on the transmit and receive generators will generate the same sequences:

If the receiver ever becomes un-synchronized with the transmitter the error rate will become very high. When this is detected at the receiver the local PRBS generator can resynchronize as above.

Exercise 6: In the diagram above, what two signals would the receiver compare to detect errors?

[^0]: ${ }^{1} \mathrm{~A}$ run is a sequence of bits with the same value.

[^1]: ${ }^{2}$ A primitive polynomial has no factors other than itself and 1 analogous to a prime number. Primitive polynomials of various orders are published.

