Solutions to Midterm Exam

Question 1

The waveform that would be used by a typical ansynchronous serial ("RS-232") interface to transmit the 8 -bit values 0xA6 (1010 0110 and 0x96 (1001 0110) using 8 bits per character odd parity with are shown below. The bits are transmitted in order from LS to MS bit with a logical ' 1 ' transmitted as a low voltage. The minimum voltage levels at the transmitter are $\pm 5 \mathrm{~V}$. The bit durations are the inverse of the bit rate, $417 \mu \mathrm{~s}$ for 2400 bps and $208 \mu \mathrm{~s}$ for 4800 bps .

Question 2

If the probability of a space is $25 \%=\frac{1}{4}$ then the sum of the other message probabilities must be $1-\frac{1}{4}=\frac{3}{4}$ and since all other message have the same probability, the probability of each is $\frac{3}{4} / 6=\frac{1}{8}$.

The entropy of a message source is defined as:

$$
H=\sum_{i}\left(-\log _{2}\left(P_{i}\right) \times P_{i}\right) \quad \text { bits/message }
$$

Where $P_{i}=\frac{1}{4}$ for spaces and $\frac{1}{8}$ for the digits. The entropy is thus:

$$
\begin{aligned}
& H=-\log _{2}\left(\frac{1}{4}\right) \times \frac{1}{4}+6 \times\left(-\log _{2}\left(\frac{1}{8}\right) \times \frac{1}{8}\right) \\
& =\frac{2}{4}+\frac{6 \times 3}{8}=\frac{22}{8}=2.75 \text { bits/message }
\end{aligned}
$$

Question 3

The following waveform shows differential Manchester line code used to transmit the bits shown. The coding convention described in the lecture notes is that ones are encoded as a different waveform than the previous one and zeros as the same waveform.

Question 4

A channel adds zero-mean Gaussian noise with a variance of $\sigma^{2}=63 \mathrm{mV}^{2}=0.063 \mathrm{~V}^{2}, \sigma=\sqrt{0.063}=$ 0.25 V or $\sigma^{2}=28 \mathrm{mV}^{2}=0.028 \mathrm{~V}^{2}, \sigma=\sqrt{0.028}=$ 0.167 V to a signal. The receiver makes errors whenever the level of the noise exceeds $v=+0.6 \mathrm{~V}$ or $v=+0.4 \mathrm{~V}$. We can compute the normalized threshold as $t=(v-\mu) / \sigma$ which is $t=0.6 / 0.25=2.4$ or $t=0.4 / 0.167=2.4$.

In both cases the probability that the voltage is less than the normalized threshold is $P(2.4)$ which can be obtained using a calculator or from the diagram in Lecture 4 as approximately 99.2%.

The error rate is the probability that the signal is greater than the threshold is $1-P(2.4)=1-0.992 \approx$ 0.8%.

