
ELEX 3525 : Data Communications
2018 Fall Term

Solutions to Assignment 3

Corrected answer to Question 1.2 to be the value of𝑁 required to detect (rather than correct) 1 error.

Question 1

1. For 𝑘 = 1 the codeword transmitted is 𝑁 1’s
or 𝑁 0’s. So the minimum distance is 𝑁. For
𝑘 = 2 there would be 𝑁 copies of the first bit
and 𝑁 copies of the second bit. The distance
could be𝑁 or 2𝑁 so theminimumdistance is𝑁.
By extension, we see that theminimumdistance
happenswhen two codewords differ by only one
data bit and in this case the minimum distance
will be 𝑁. So, in general, for an (𝑁𝑘, 𝑘) repeti-
tion code the minimum distance will be 𝑁.

2. A code with minimum distance 𝑑min can detect
𝑑min − 1 errors. Since 𝑑min = 𝑁, setting 𝑑min −
1 = 𝑁 − 1 = 1 we find 𝑁 ≥ 2 to detect 1 error.
The code rate would be the number of data bits
per transmitted bit which is Ⴒ

ᄸ . The rate for a
single-error-detecting repetition code would be
Ⴒ
Ⴓ = 0.5.

3. Solving for 𝑑min with 𝑡 = 3 ≤ ⌊ᅈminႼႲႳ ⌋ we find
𝑑min ≥ 7. So to correct 3 errors a repetition code
would have to repeat each bit 7 times and the
code rate would be Ⴒ

Ⴘ ≈ 0.14.

Question 2

Looking at the received bits:

..0 0 1 1 1
0 1 0 1 0
1 1 1 1 0
0 1 0 0 1
0 1 0 1 0

(a) The first row and the first column’s parity bits
(underlined) are not correct so there must be an
error.

(b) If there was only one error it must be in the bit
that is in the first row and the first column – the
top left bit (circled).

(c) This code is only guaranteed to correct one error
since itwould be impossible to detect two or four
errors in any row or column (the parity would
be unaffected). However, the code can correct
thosemulti-bit error patternswhere all errors lie
on the diagonal.

(d) When the number of data bits is 𝑘 = 𝑚Ⴓ we
would need to transmit𝑚Ⴓ data bits and 2𝑚+ 1
parity bits so the code rate would be:

𝑚Ⴓ

𝑚Ⴓ + 2𝑚 + 1

(e) For 𝑘 = 64,𝑚 = √64 = 8 and the code rate is:

8Ⴓ
8Ⴓ + 2 ⋅ 8 + 1 =

64
64 + 17 ≈ 0.79

Although such horizontal-and-vertical parity
check codes1 are more efficient than repetition
codes, the most efficient single-error-correcting
codes are Hamming codes. These are also easy to
implement. For an integer value𝑚 a Hamming code
has a codeword size of 𝑛 = 2ᅔ − 1, 𝑘 = 2ᅔ − 1 − 𝑚
data bits and 𝑛 − 𝑘 = 𝑚 parity bits. For example,
for 𝑚 = 6 each codeword has 𝑛 = 63 bits and
𝑘 = 64 − 6 − 1 = 57 data bits for a rate of ႶႸႷႴ ≈ 0.90.

Question 3

(a) At 100 kb/s the bit duration is 10 𝜇s and a 40 𝜇s-
long noise impulse would affect four consecu-
tive bits. The interleaver must spread this out
over at least four codewords so the block inter-
leaver depth (number of rows)must be at least 4.
The interleaver width should be the FEC code-
word size of 𝑛 = 256 bits.
Each interleaved block requires 4 × 256 × 10 =
10.24 ms to transmit which is less than the pe-
riod of the noise and so there will be only one

1Sometimes known as transverse and longitudinal parity
checks since they were originally used to protect information
stored on tape.
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noise impulse per interleaver block. If the pe-
riod were shorter than this then we would have
an average of more than one bit error per code-
word andwewould need to use amore powerful
FEC code.

(b) The delay added due to interleaving can be de-
fined as the time from when the first bit is input
to the interleaver towhen that same bit is output
from the de-interleaver.

As computed above, it takes 10.24 ms to fill the
block interleaver at the transmitter before trans-
mission can begin. Then it takes 10.24 ms to
transmit the contents of the interleaver and fill
the de-interleaver memory – which can happen
while the data is being received. At this time the
de-interleaver at the receiver is full and the first
bit of the received data can be output. Thus the
additional delay due to interleaving is 2×10.24 =
20.48ms.

Question 4

(a) The sequence of 2ᅕ − 1 values of the shift reg-
isters (SR’s) can be computed by hand and are
shown below for the two feedback structures.

External
Feedback

Internal
Feedback

step SR output SR output
1 1111 1 1111 1
2 0111 1 1110 0
3 0011 1 0111 1
4 0001 1 1010 0
5 1000 0 0101 1
6 0100 0 1011 1
7 0010 0 1100 0
8 1001 1 0110 0
9 1100 0 0011 1
10 0110 0 1000 0
11 1011 1 0100 0
12 0101 1 0010 0
13 1010 0 0001 1
14 1101 1 1001 1
15 1110 0 1101 1
1 1111 1 1111 1

(b) Yes, each sequence has 8 1’s and 7 0’s.

(c) Yes, in both cases the period is 15 (the shift reg-
ister contents return to all-1’s after 15 bits).

(d) By inspection, the two sequences are the same
but in reverse order.

You could also use a script to compute the shift reg-
ister values. For example, using Matlab (Octave):
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ePF

which outputs:

1 1111 1111
2 0111 1110
3 0011 0111
4 0001 1010
5 1000 0101
6 0100 1011
7 0010 1100
8 1001 0110
9 1100 0011

10 0110 1000
11 1011 0100
12 0101 0010
13 1010 0001
14 1101 1001
15 1110 1101
16 1111 1111

or using Python:

sTe�=1�1�1�1?
sTK�sTe
HoT K KP TCPIe
1�17�:

RTKPt
�]:10_ ]_]_]_]_ ]_]_]_]_�
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�
=K?
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sTe�=sTe=2?@sTe=3?�sTe=0?�sTe=1?�sTe=2??
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which produces the same output as above.
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