Solutions to Assignment 1

Version 2: Reworded solution to Question 4.

Question 1

Assuming the frequency of occurrence in this story is an accurate estimate of a message's probability,' we can compute the probability of message i^{\dagger} by dividing the number of occurrences of message $i\left(N_{i}\right)$ by the total number of messages, $N=\sum_{i} N_{i}$:

$$
P_{i}=\frac{N_{i}}{N}
$$

The amount information contained in message i is given by:

$$
I_{i}=-\log _{2}\left(P_{i}\right)
$$

The amount of information in the story (I) is the sum of the information in its messages:

$$
I=\sum_{i} N_{i} \times I_{i}
$$

The supplied .csv file gives the values of N_{i} so we can compute N, I_{i} and I using the spreadsheet sum and \log functions. Here is an example of the formulas (column B is N_{i}, column C is I_{i} and line 107 computes N and I):

	A	B	C
104	the	6	=B104*-LOG(B104/B\$107,2)
105	tubes	1	=B105*-LOG(B105/B\$107,2)
106	gardens	1	=B106*-LOG(B106/B\$107,2)
	total	=SUM(B2:B106)	=SUM(C2:C106)

(a) If each word is a message, the story contains $N=159$ messages (words) and $I=1018.7$ bits of information.
(b) Similarly, if each character is a message, the story contains $N=783$ messages (characters) and $I=3234.4$ bits of information.
(c) If we treat each character as a message with $I_{i}=8$ bits of information then the story contains $783 \times 8=6264$ bits of information.

[^0]
Question 2

To include the effects of all factors affecting the peruser throughput we can analyze a time interval that includes transmissions from each of 10 users with one short and one long frame from each one.

The elapsed time for this sequence would be:

$$
T=10 \times\left(T_{\text {short }}+8+T_{\text {long }}+8\right) \mu \mathrm{s}
$$

where

$$
T_{\text {short or long }}=\frac{8\left(10+7+N_{\mathrm{p}}+N_{\mathrm{d}}\right)}{2 \times 10^{6}} \mu \mathrm{~s}
$$

where N_{p} is the number of parity bytes in the message: $N_{\mathrm{p}}=12 \times\left\lceil\frac{64}{64}\right\rceil=12$ bytes for 64 -bytes messages and $N_{\mathrm{p}}=12 \times\left\lceil\frac{1500}{64}\right\rceil=288$ bytes for $1500-$ byte frames and N_{d} is the number of data bytes in the frames (64 or 1500). The spreadsheet below calculates the throughput for one user as $164 \mathrm{~kb} / \mathrm{s}$:

data bytes/frame	Nd	64	1500 bytes
parity bytes/frame	Np	12	288 bytes
frame duration	Tshort, Tlong	$372.0 \mathrm{E}-6$	$7.2 \mathrm{E}-3 \mathrm{~s}$
duration of 20 frames	T	$76.1 \mathrm{E}-3$	s
data bits/user/frame		12512	
data bits/user/s		$164 \mathrm{E}+3$	bps

Question 3

The UTF-8 encoding table in the Unicode specification (Table 3-6) shows that each byte's value determines the allowed position of that byte in a UTF-8 encoding:

- 00 to 7F: first byte of a 1-byte encoding
- 80 to BF: a continuation byte
- C0 to DF: first byte of a 2-byte encoding
- E0 to EF: first byte of a 3-byte encoding
- FF: first byte of a 4-byte encoding

For the byte sequence:
(a) E1 should be followed by 2 bytes. These are A2 and 84 which are in the required range for continuation bytes so this is a valid 3-byte UTF-8 encoding.
The next byte, BE , is in the continuation byte range, thus cannot begin a UTF-8 encoding and should be skipped.
E3 should be followed by 2 bytes. These are 81 and AE which are in the required range so this is a valid 3-byte UTF-8 encoding.
45 should be followed by 0 bytes. This is a valid 1-byte UTF-8 encoding.
The next byte, 8 A , is in the continuation byte range, thus cannot begin a UTF-8 encoding and should be skipped.
D0 should be followed by 1 byte. This is B7 which is in the required range so this is a valid 2-byte UTF-8 encoding.
Thus BE and 8A are not part of valid UTF-8 sequences and should be skipped.
(b) The sequence E1 A2 84 has a binary representation $111000011010 \quad 00101000 \quad 0100$ from which we can extract the bits $z=0001$, $y=100010$, and $z=000100$, and the code point $\mathrm{U}+1884$.

The sequence E3 81 AE has a binary representation $1110 \quad 0011 \quad 1000 \quad 0001 \quad 10101110$ from which we can extract the bits $z=0011$, $y=000001$, and $x=101110$, and the code point $\mathrm{U}+306 \mathrm{E}$.
The sequence 45 has a binary representation 01000101 from which we can extract the bits $x=100$ 0101, and the code point $\mathrm{U}+0045$.
The sequence D 0 B 7 has a binary representation 1101000010110111 from which we can extract the bits $y=10000, x=11 \quad 0111$, and the code point U+0437.
(c) The names of the corresponding characters are:

- U+1884 is the MONGOLIAN LETTER ALI GALI INVERTED UBADAMA (ε).
- U+306E is the HIRAGANA LETTER NO (の).
- U+0045 is the ASCII E (E).
- U+0437 is the CYRILLIC SMALL LETTER ZE (3).

Question 4

The probability that a bit is received in error is given in the question as $p=10^{-6}$. Since there are only two possible outcomes (error or no error), the probability that a bit is not received in error must be $1-p \approx 1$.

Each received character has 9 bits (8 data bits and 1 parity bit).
(a) When there is a sequence of independent outcomes (e.g. coin flips) the probability of a specific sequence of outcomes is given by the product of their individual probabilities.

The probability that the first bit is in error but the other 8 bits are not in error is the product of these probabilities: $p \times(1-p) \ldots \times(1-p)=$ $p(1-p)^{8} \approx 1 \times 10^{-6}$.
(b) The probability of one of several independent outcomes is given by the sum of the probabilities of these outcomes.

If we consider each received character as an outcome, there are 9 possible outcomes that have one bit in error ${ }^{\ddagger}$. Each of these has the probability computed above. The sum of their probabilities is $9 p(1-p)^{8} \approx 9 \times 10^{-6}$. This is the probability that one bit is in error (any one bit, but exactly one).
(c) The probability of receiving a character that has two specific bits in error is $p^{2}(1-p)^{7}$. But there are

$$
C(9,2)=\frac{9!}{2!(9-2)!}=\frac{9 \times 8}{2}=36
$$

possible ways of having 2 errors in 9 bits where $C(n, k)$ is the number of combinations of k things taken from n. Thus the probability of any two (but exactly two) bits being in errors in a character is $36 p^{2}(1-p)^{7} \approx 36 \times 10^{-12}$.

Thus, although a single parity bit does not detect twobit errors, these are much less likely than single-bit errors (at low bit error rates, at least).

[^1]
[^0]: *Perhaps not a good assumption for such a short sample but that's all we're given.
 ${ }^{\dagger}$ The subscript i refers to the i 'th unique message, not the i 'th message transmitted.

[^1]: ${ }^{\ddagger}$ There are 8 possible locations for a data bit error and one possible location for the parity bit error

