Polynomials in GF(2) and CRCs

Exercise 1: Write the addition and multiplication tables for GF(2). What logic function can be used to implement modulo-2 addition? Modulo-2 multiplication?

Exercise 2: What are the possible values of the results if we used values 0 and 1 but the regular definitions of addition and multiplication? Would this be a field?

$$\begin{array}{c|cccc}
+ & 0 & 1 & \times & 0 & 1 \\
\hline
0 & 0 & 1 & & 5 & 0 & 0 \\
1 & 1 & 2 & & 1 & 0 & 1
\end{array}$$
Not a field.

Exercise 3: What is the polynomial representation of the codeword 01101?

$$0 x^{4} + | x^{3} + | x^{2} + 0 x^{1} + | x^{0}$$

$$= x^{3} + x^{2} + |$$

Exercise 4: What is the result of multiplying $x^2 + 1$ by $x^3 + x$ if the coefficients are regular integers? If the coefficients are values in GF(2)? Which result can be represented as a bit sequence?

Which result can be represented as a bit sequence?

$$0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}}$$

$$|x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}}$$

$$|x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}}$$

$$0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}}$$

$$0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 0x^{\frac{1}{5}} + 1x^{\frac{1}{5}} + 1x^{\frac{1}{5}}$$

Exercise 5: If the generator polynomial is $G(x) = x^3 + x + 1$ and the data to be protected is 1001, what are n - k, M(x) and the CRC? Check your result. Invert the last bit of the CRC and compute the remainder again.

again.

$$|00| > 1 \times^{2} + 0 \times^{2} + 0 \times + 1 \approx^{6} = x^{2} + 1$$

what is $n + k$? remaindum $R(x)$ has to be

 $1 \times 2^{3} = 1$
 $1 \times 2^{3} = 1$

Exercise 6: Is a 32-bit CRC guaranteed to detect 30 consecutive errors? How about 30 errors evenly distributed within the message?

Exercise 7: What is the probability that a CRC of length n-k bits will be the correct CRC for a randomly-chosen codeword? Assuming random data, what is the undetected error probability for a 16-bit CRC? For a 32-bit CRC?

