
ELEX 3525 : Data Communications
2018 Fall Term

Asynchronous Serial Interfaces

This lecture describes the RS-232 serial interface, a simple communications interface. Although no longer widely used, it
demonstrates some features that are used by more advanced communication protocols: transmission of data as a serial bit
stream, encoding of binary values into voltages, DTE vs DCE, an error-checking technique using redundant parity bits, and
a framing technique that the receiver uses to group bits.
After this lecture you should be able to: identify the purpose and signal voltages present on the data and handshaking
signals; convert to/from the signal waveform and the data values transmitted; predict and explain the results of data rate
and character format mismatches; explain advantages of differential “RS-422” serial interfaces; distinguish between syn-
chronous and asynchronous interfaces.

Serial Interfaces

To transmit data we could use one conductor for each
bit of a word and transfer all the bits simultaneously
– in parallel – by using a clock signal to load the word
into flip-flops on the receiving side:

D Q
n bits

transmitter

channel

receiver

transmit data

clock

received data

We can reduce the number of conductors required
by transmitting the bits sequentially rather than in
parallel. In addition, if we can somehow recover the
clock signal at the receiver instead of transmitting it
along with the data we could eliminate that signal as
well:

D Q
n bits

transmitter

channel

receiver

transmit 
     data

clock

received
data

parallel
   to
 serial

 serial
   to
parallel

  clock
recovery

1 1n bits

This lecture introduces one such interface.

RS-232 Interface

The RS-232 interface is a simple data communication
interface that was widely used for communication at
low speeds (up to tens of kb/s) with devices such as
modems, terminals and printers. Today it’s mainly
limited to industrial automation and diagnostic inter-
faces.

DTE and DCE

The original RS-232 connector was a 25-pin D-style
connector often called a “DB-25”.
In its simplest form the interface uses two sig-

nal pins and one ground pin. Pin 2 is called Trans-
mit Data (TxD), pin 3 is called Receive Data (RxD)
and pin 7 is signal ground. When two serial devices
are connected together they are connected pin-to-pin
(RxD is connected to RxD and TxD is connected to
TxD). This means that RxD must be an input on one
device and an output on the other device. Thus the
terms RxD and TxD do not say whether a pin is an in-
put or output but instead are names for pins on the
connector.
The serial interface was originally designed to con-

nect modems – “Data Communications Equipment”
or DCE – to computer terminals “Data Terminal
Equipment” or DTE. The terms “receive” and “trans-
mit” are thus from the point of view of the data termi-
nal. On a DTE TxD is an output and RxD is an input.
Conversely, on a DCERxD is an output and TxD is an
input. Typically, DTE connectors are male and DCE
connectors are female but there are exceptions.

DCEDTE

(“modem”)(“terminal”)

TxD 

RxD 

 TxD

 RxD

Exercise 1: Is the “Transmit Data” (TxD) signal an input or an

output? How about “Receive Data” (RxD)? Is a computer a ‘mo-

dem’ (DCE) or a ‘terminal’ (DTE)?

In addition to the two data lines, most RS-232 de-
vices implement additional “handshaking” pins that

lec2.tex 1 2018-09-17 09:58



allow the two devices to exchange status information.
Of these, the most useful are called RTS (Request To
Send) and CTS (Clear To Send). The RTS line is an
output on a DTE and is used to tell the DCE that the
DTE wants to send data (RTS was originally used to
control half-duplex modems – those that can’t trans-
mit and receive simultaneously – but these are rarely
seen today). The CTS pin is an output on a DCE and
is used by the DCE to indicate that it can accept data
on the TxD line.
Since these signals are used to control the flow of

data from the DTE (and optionally from the DCE, see
below) these pins are called [hardware] “flow con-
trol” signals.

DCEDTE

(“modem”)(“terminal”)

RTS  RTS

 CTSCTS 

DSR  DSR

DTR  DTR

The second set of control signals are DTR (Data
Terminal Ready) and DSR (Data Set Ready). These
signals indicate that the DTE and DCE devices re-
spectively are connected and operational. Typically
they indicate that the power is turned on. However,
by de-asserting DTR it is possible, if the modem is
correctly configured, for the DTE to prevent the DCE
from sending data on RxD. When used this way DTR
act as a flow-control signal in the other direction –
from DCE to the DTE.
A number of other handshaking signals, such as

“ring indicator,” are defined by the standard but are
seldom used.
In addition to the standard DB-25 serial connec-

tor, there are a number of smaller connectors that are
often used. These connectors are physically smaller
and carry a subset of the RS-232 signals. The most
common are the DB-9 connectors used on some
PCs and the inexpensive telephone-style “RJ-11” (6-
pin) and “RJ-45” (8-pin) connectors (used on some
routers and switches).

Adapters are often used to convert between differ-
ent styles of connectors (e.g. DB-25 to DB-9); be-
tween male and female connectors (called a “gender
adapter”which allows twomales or two females to be
connected together); and to switch betweenDCE and
DTE pinouts (called a “null modem” which allows
two DCEs or two DTEs to be connected together):

DTE

TxD TxD

RxD RxD

DTE

  null

modem

Interface Voltages

The serial interface voltage levels are bipolar (posi-
tive and negative) with respect to ground. The table
below summarizes the relationship between voltage
level, logical meaning on handshaking lines and the
corresponding data bit value (valid on TxD and RxD
only).

Signal Line For For
Level State Handshaking Data

negative mark false 1
positive space true 0

Note: The data lines (TxD and RxD) transmit the
binary value ‘1’ when negative. The control lines
(e.g. CTS) are asserted (true) when positive. The
convention for the data lines is probably the reverse
of what you were expecting.
The received signal must be greater than +3 volts

to be considered positive and less than -3 volts for
negative. Intermediate values are considered invalid.
This allows disconnected pins to be detected. A larger
swing is required at the transmitter – at least ±5 V.
This allows for attenuation by the cable.

�ΜΡΖΕΠΜΗ

�ΖΕΠΜΗ

�ΖΕΠΜΗ

���:

��:

��:

��:

��:

ΞςΕΡΩΘΜΞΞΙς ςΙΓΙΜΖΙς

The terms “mark” and “space” supposedly refer
to the earliest telegraph machines that converted the

2



Figure 1: Asynchronous Interface Waveform.

signal current to visible marks and spaces by mov-
ing a pen up and down against a moving strip of pa-
per. For teleprinters the term ‘mark’ came to mean
the steady current flowing when no data was being
sent (see below).

Character Format

The signal format, shown in Figure 1, was originally
designed to drive teleprinters – machines that re-
placed telegraph operators by converting electrical
signals carried over telegraphwires into printed char-
acters. “Teletype” was one manufacturer.
Data is transferred over the serial interface one bit

at a time. A positive (zero) bit (the “start bit”) is sent
to indicate the start of the character being sent. This
is followed by the bits in the character, from LS toMS
bit. After sending the 7 (for ASCII) or 8 (for arbitrary
bytes) bits, an optional parity bit can be sent, followed
by a one “stop” bit.
The parity bit is set to the modulo-2 sum1 of the

data bits (even parity) or the complement (odd par-
ity). This makes the number of 1’s in the word an
even or odd number (even and odd parity respec-
tively) and allows the receiver to detect some errors.
Exercise 2: Will the parity bit allow the receiver to detect all

single-bit errors? All double-bit errors?

Each of these bits has the same duration. Both
the transmitter and the receiver must be configured
to use the same bit duration (typically specified as a
baud rate = bit duration), number of data bits and
parity (if used).

1The remainder after dividing the sum by 2.

Exercise 3: Draw the waveform used to send the ASCII charac-

ter ’d’ (hex 64) at 4800 bps with eight data bits and even parity.

The receiver waits for the rising edge of the start
bit and then samples after the appropriate delays (1.5
baud periods, 1 baud period, 1 baud period,...). The
use of stop and start bits ensures that there is a rising
edge between each character and allows the receiver
to re-synchronize itself at the start of each character.
This allows for small variations between transmitter
and receiver timing.
Exercise 4: What happens if the receiver’s clock is running

faster than the transmitter clock?

If the transmitter and receiver data rates, word
lengths or parity are not set up the same way, the re-
ceiver may treat a transmitted data bit as a start bit. If
the received signal at time a stop bit is expected high
(a 0) then recever detects a “framing error.” The re-
ceiver can either ignore the received character or in-
dicate an error to the software that processes the re-
ceived data.
Exercise 5: Whatwould happen if the receiver was expecting 8-

bit characters and the transmitter was sending 7-bit characters?

What about the reverse case?

There are a number of standard bit rates, typically
powers of two times 1200 bps (1200, 2400, 4800 bps
etc). The RS-232 standard specifies maximum bit
rates, distances, etc. but these are usually ignored in
practical applications. For short distances it’s possi-
ble to send at rates over 100 kbps.
AUART (UniversalAsynchronousReceiver Trans-

mitter) is an IC that converts an asynchronous data
signal to and from an interface that transfers all the
bits in parallel (all at the same time). Microcon-

3



trollers often contain UARTs. Software controls a
UARTs by reading and writing various data, status
and control registers.
Since the microcontroller’s output is at unipolar

logic levels (e.g. 0 and 3.3V), an interface IC is nor-
mally required to convert to/from the bipolar RS-232
voltages. We will study one of these ICs in a lab.
The need to manually configure both interfaces, to

choose between the many types of cables required by
the different DTE/DCE and connector combinations
and the relatively low data rates have made asyn-
chronous serial interfaces nearly obsolete.

Other Asynchronous Serial Interfaces

The “RS-422” interface specification uses a similar
signaling scheme but uses differential signals (oppo-
site voltages on two signal lines) to increase immu-
nity to noise and increase maximum transmission
distance. Data rates of 1 Mbps are common. RS-422
is common in industrial applications because of its
improved noise immunity. We will cover differential
signalling in a subsequent lecture.
RS-485 is similar to RS-422 but the transmitter

(driver) can be disabled. This allowsmultiple devices
to be connected in parallel along one “multidrop” ca-
ble.

Synchronous Interfaces

Modern data communication systems (e.g. Ethernet,
WiFi, etc) operate synchronously.
Synchronous communication systems are those

that transmit data bits continuouslywithout start and
stop bits.
Instead of looking for a start bit at the start of each

character, synchronous systems observe transitions
in the data signal to generate a constant-rate clock
signal. This clock is used to recover the data:

data

clock

transmitter receiver

  clock
recovery

data

clock

channel

or

GPSGO

HEXE

HEXE�WEQTPIH�SR�VMWMRK�IHKI�SJ�GPSGO

The data is often grouped into “frames” which be-
gin with a known preamble signal. The preamble al-
lows the receiver to recognize the start of a frame and
to synchronize its local clock to the incoming signal.
As we will see later, RS-232/-422/-485 interfaces

include features shared bymost data communication
systems:

• a signal at the beginning of the transmitted
waveform that allows the receiver to synchro-
nize itself to the incoming data (a “preamble”)

• parity bit(s) appended to the data to detect, and
possibly correct, errors (error detection and cor-
rection)

• a way to group bits together (“framing”)

4


