
ELEX 3525 : Data Communications
2018 Fall Term

FPGA-Based Error Rate Measurement

Introduction

A Field-Programmable Gate Array (FPGA) is an IC
that can be programmed to implement different digi-
tal logic functions. FPGAs are primarily used in low-
volume products. But they are also useful for setting
up custom tests and measurements.
Logic analyzers are instruments similar to oscillo-

scopes but for digital signals. They trigger on events
in digital signals and then capture and display them.
FPGAs can be configured to include a logic analyzer
function. FPGAs with embedded logic analyzers are
a powerful tool.
In this lab you will use an FPGA with an embed-

ded logic analyzer to measure the error rate of data
transmitted over a noisy channel using the following
measurement setup:

AWG

FPGA

PC

USB

’scope

−

+

signal+noise

The AWG outputs a bipolar NRZ signal corrupted
with additive white Gaussian noise (AWGN). A com-
parator compares the noisy signal to a decision
threshold at 0 V. The FPGAmonitors the comparator
output and counts the total number of bits received
and the number of bits received in error. The ratio of
errors to bits is the bit error rate (BER).
Analysis of the error rate for bipolar NRZ and

AWGN shows that the error rate is the same regard-
less of whether a high or low level is transmitted.
In this lab we will only transmit a high data value.
The transmitted signal is thus a zero-mean Gaussian
noise signal with a positive offset equal to the high
data signal level.
The signal plus noise is applied to the negative in-

put of the comparator. When this input is lower than
the positive input (0 V) the output is high, otherwise
it is low. The comparator thus indicates if an error
would be made if the receiver sampled the received
signal at that time.

The diagram below shows the probability distribu-
tion of the signal plus noise:

�:

ΤςΣΦΕΦΜΠΜΞ]�
ΗΙΡΩΜΞ]

�ΖΣΠΞΕΚΙ

�ΡΣΜΩΙ���ΗΕΞΕ
&)6

�ΗΕΞΕ�ΖΣΠΞΕΚΙ
�ΛΜΚΛ

The signal voltage is the mean of the distribution
(𝜇) and is measured as the average voltage using DC
coupling. The standard deviation of the noise (𝜎) and
is measured as the RMS voltage using AC coupling to
eliminate the average (DC) component.
In this lab you will measure the BER for various

signal to noise power ratios (SNRs) and compare your
measurements to theoretical results.

FPGA-Based BER Measurement

Wewill use anAlteraDE-0Nano FPGAboard that in-
cludes a Cyclone IV FPGA, 8 LEDs, two push-buttons
and two connectors with 40 I/O pins each.
The following photograph shows the LEDs and

pushbuttons on the board:

97&�'SRRIGXSV 0)(?�A0)(?�A /)=?�A��XVMKKIV


/)=?�A��VIWIX
+4-3��4MR��

lab7.tex 1 2018-10-18 20:29



The FPGA board has two pushbuttons. You will
use the left pushbutton, labelled KEY1, to reset the
error counter. You will use the right button, labelled
KEY0, to trigger the logic analyzer and display the cur-
rent bit and error counts on the PC.
The FPGA is programmed over a “JTAG” interface

connected to the PC over a USB port. The JTAG in-
terface is also used to access the embedded logic an-
alyzer.
The comparator circuit is connected using a 40-pin

ribbon cable plugged into the GPIO0 connector on
the FPGA board (see photo above). Note that the rib-
bon cable connector has a tab on one sidewhichmust
fit in the slot on the board’s plexiglass cover.
The following table shows the connections on the

other end of the ribbon cable when the connector
holes are facing up and pin 1 (red conductor) is along
the top. Each square represents a position where you
can insert a wire.

The outer columns with letter-number pairs show
the row and column respectively on the 256-pin
(16×16) BGA (ball-grid array) FPGA package; the
middle columns with numbers beginning with zero
(0), when prefixed with GPIO_, are the names to
be used in Quartus for the signals on the 40-pin
connnector; the numbers in the inner columns, next
to the squares, are the connector pin numbers.
For example, the signal on FPGA pin A2 has sig-

nal name GPIO_02 and is on pin 5 of the connector
(third pin from the top on the right side). Look at

the instructor’s demonstration circuit if you have any
questions.

FPGA Configuration

Figure 1 shows the schematic of the circuit to be pro-
grammed into FPGA. It includes a 100 kHz bit clock
and two counters. One counter counts up on every
clock cycle, the other counts up only when the com-
parator indicates an error.
The procedure to enter the design and configure

the FPGA using the (free) Quartus Prime software is
as follows:

• start Quartus Prime

• File -> New -> New Quartus Prime Project

• create or select a folder, project name (e.g. lab7),
empty project, the Cyclone IV E Family, the
EP4CE22F17C6 device, and leave other settings
set to defaults

• select Assignments -> Import Assignments ->
DE0-NanoX3525.qsf to assign FPGA pin num-
bers to the signals on the DE0-Nano board. This
file is available on the course web site

• File -> New -> Block Diagram/Schematic File

• if necessary, select View -> Utility Windows ->
IP Catalog to show the list of configurable intel-
lectual property (IP) blocks

• select Library -> Basic Functions -> Arithmetic
-> LPM_COUNTER

• define the counter component by specifying a
name (e.g. bitcounter), VHDL source, 32-bit
up-only counter with count enable and syn-
chronous clear inputs. Enable generation of a
symbol (.bsf) file and add the component to your
project.

• similarly, define a clock component by selecting
Library -> Basic Functions -> Clocks; PLLs and
Resets -> PLL -> ALTPLL

• specify a name (e.g. clock), a 50 MHz input,
locked and a 100 kHz clock outputs (c0), and no
additional inputs or outputs. As before, gener-
ate a symbol (.bsf) file and add it to the project.

2



clock

reset

reset

clock

reset

clock

bits[31..0]

errors[31..0]

trigger

bits[31..0], errors[31..0]

VCC

NOT

inst5

VCC
CLOCK_50 INPUT

LED[2]OUTPUT

LED[3]OUTPUT

VCC
KEY[1] INPUT

VCC
GPIO_0_IN[0] INPUT

up countersclr

clock

cnt_en

q[31..0]

bitcounter

bitcount

up countersclr

clock

cnt_en

q[31..0]

bitcounter

errorcount

Cyclone IV E

inclk0 frequency: 50.000 MHz

Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)

c0 1/500 0.00 50.00

inclk0 c0

locked

clock

bitclock

LED[1]OUTPUT

VCC
KEY[0] INPUT LED[0]OUTPUT

data[][] result[]

LPM_OR

inst1

PIN_A8

PIN_R8

PIN_B13

PIN_A13

PIN_E1

PIN_A15PIN_J15

PIN_A11

LPM_WIDTH 1

LPM_SIZE 64

Parameter Value

Figure 1: FPGA schematic showing the clock, bit counter and error counter.

The ports for the clock and counter symbols
should match those shown in Figure 1.

• use the “Symbol Tool” and insert two counters
and one clock from the Project library as shown
in the schematic. Give each component in-
stance a unique label (e.g. bitcount, errorcount,
bitclock) by changing the inst(ance) name in the
symbol.

• use the “Symbol Tool” and insert the required
Vcc symbol (to enable the bit counter), and one
64-input OR gate (Megafunctions -> gates ->
lpm_or) as shown in the schematic. Hints: Use
the search box to find components. It is often eas-
ier to give signals names (right-click ->Properties)
rather than connecting them. Assign names to
the bit and error count signals (right-click, Prop-
erties -> Name) so the logic analyzer can select
them.

• use the “Pin Tool” to insert the output and input

ports labeled with the exact pin names shown
in the schematic1 Since the counter outputs are
only used by the logic analyzer, they must drive
an output (through the 64-inputOR gate) so that
they are not optimized away. The error and trig-
ger pushbuttons drive two LEDs to verify but-
ton pushes and that the FPGA has been pro-
grammed.

• use the “Bus”, “Node” and “Selection” tools
to connect the components as shown in the
schematic. Note that the bus ranges in the
schematic below should be [31..0].

• click on the “Start Compilation” icon. Correct
any errors and recompile as necessary.

• connect the FPGA to the PC’s USB port and se-
lect Tools -> Signal Tap II Logic Analyzer

1Signal names must match the symbol names in the DE0-
NanoX3525 settings file or else they will not be connected to the
correct FPGA pins.

3



• under JTAG Chain Configuration -> Setup se-
lect USB Blaster

• click on ... and select the correct .sof
(FPGA serial programming) file (it’s in the out-
put_files folder)

• click on the download (“Program Device”) icon
tomake sure the device is recognized and can be
programmed.

• under Signal Configuration use the node finder
(...) to list all pins using the SignalTapII:pre-
synthesis filter and add clock:bitclock c0 as
the clock

• in the logic analyzer window double-click in the
indicated area to add signals. As before, list
the pins and add the GPIO_0_IN[0] (error de-
tected), KEY[0] (trigger) andKEY[1] (reset) pins
to the list of signals beingmonitored in the Setup
tab. Add the bit and error count signals.

• right-click on the trigger condition for KEY[0]
(trigger) and select a falling edge

• save the SignalTap file, add it to the project, re-
compile and reprogram the FPGA

• click on “AutorunAnalysis” to start the logic an-
alyzer

• the logic analyzer should display the error and
bit counts in the Data tab each time you press on
the trigger button. Change the display format to
unsigned decimal. You may need to zoom in to
see the bus values.

Threshold Comparator

The schematic of the comparator circuit is shown be-
low:

−

+

LM339

3k3

1N5820

1k signal
+noise error

detected

3V3

10

11
12

3

13

Power for the comparator is supplied by 3.3 VDC
from the FPGA board. Connect to 3.3V on ribbon ca-
ble connector pin 29 and ground on pin 30.
The comparator output is open-collector so a pull-

up is required.
The Schottky diode prevents the input going more

negative than about -0.3 V to prevent damage to
the comparator which cannot tolerate negative input
voltages. The white band marks the cathode. The
diode must be connected with the correct polarity or
instead of protecting the comparator from negative
voltages it will prevent positive voltages from being
applied to the comparator input and could result in
damage to the comparator.

GEXLSHIERSHI

FERH

The resistor values are not critical – values between
1 k and 4.7 k should work well.
You can substitute an LM3302 comparator. Their

pin-out is:

1
2
3
4
5
6
7

14
13
12
11
10

9
8

1OUT
2OUT

V CC
2IN−
2IN+
1IN−
1IN+

3OUT
4OUT
GND
4IN+
4IN−
3IN+
3IN−

D OR N PACKAGE
(TOP VIEW)

Assemble the circuit on a prototyping board and
make connections to the cable that connects to the
FPGA board. The red stripe marks the side of the rib-
bon cable connected to pin 1.
The following photograph shows how the circuit

can be assembled on a prototyping board and con-
nections made to a cable that connects to the FPGA
board. The red stripe (on the left of the photograph
below) marks the side of the ribbon cable connected
to pin 1. The capacitor (orange) shown in the photo-
graph should be omitted.

4



Note: The FPGA will be damaged by 5 V sig-
nals. External power supplies must not be used
during this lab.
50% of your lab mark will be deducted if you

turn on or hook up a power supply during this lab!

Gaussian Noise Generation

The Arbitrary Waveform Generator (AWG) will out-
put samples of a zero-mean pre-computed AWGN
signal. The offset voltage will be configured manu-
ally.
Download the berlabnoisegen.m file from

the course web site and run the command
berlabnoisegen in Matlab or Freemat to gen-
erate the file awgn.raf. Set the AWG for Arb
operation and load the .raf file using the instruc-
tions in a previous lab. Select SRate (sample rate)
mode and set the sample rate to 200 kHz.

Data Analysis

The oscilloscope and DMM can be used to measure
the signal (average-DC coupled) and noise (rms-AC
coupled) voltages at the negative comparator input.
From these, which correspond to 𝜇 and 𝜎 of the sig-
nal’s Gaussian probability distribution, the BER can
be predicted.
The logic analyzer can be used to read the bit and

error counter values. Their ratio is the measured

BER. The predicted and measured BER values can
then be plotted against each other.
For communication systems the BER is usually

plotted as a function of the signal to noise ratio (SNR)
in dB instead of against the normalized threshold (𝑡 =
ႱႼᆋ
ᆑ ). When the BER in log units is plotted against

the SNR in dB the result is the familiar “waterfall”
curve showing a rapid reduction in BERwith increas-
ing SNR.

Procedure

Use the instructions above to enter the design shown
in Figure 1 and program the FPGA. Build the com-
parator circuit and connect it to the FGPA board us-
ing the supplied ribbon cable. Connect the output of
the AWG to the comparator circuit.
Look at the comparator input and output with

a ’scope and adjust the AWG amplitude and offset
to verify that the comparator operates as expected.
Then check that the bit and error counts as displayed
by the logic analyzer are changing as expected.
Set the AWG offset (signal level) to 1 V and ver-

ify this by measuring the DC (average) voltage with
the DMM. Measure the RMS voltage at the compara-
tor input. Adjust AWG output amplitude to obtain
the desired SNR. Record the signal voltage and noise
RMS voltage. Reset the error and bit counts by press-
ing KEY1 and trigger the logic analyzer by pressing
KEY0 to view the bit and bit error counts. Wait un-
til the error count reaches 10 or more errors to get a
reasonably accurate estimate of the BER. Record the
numbers in your spreadsheet. Repeat for each of the
SNRs in your table.
Compare yourmeasured and predicted results and

try to identify the cause of any differences. Note the
following:

• the noisewaveformonly contains 1million sam-
ples. It may not contain any samples with large
voltages and you may not see any errors at high
SNRs.

• the ’scope’s RMS measurements appear to be a
function of the sweep rate and may not be reli-
able (check using the DMM).

Save a ’scope screen capture showing the signal
plus noise input to the comparator and the error-
detect output of the comparator:

5



Pre-Lab Report

Create the spreadsheet you will use to record your
data. You will be measuring the signal voltage (DC,
average voltage), the noise voltage (AC, RMS volt-
age), the number of errors received and the number
of bits received. From these you will compute the
SNR (in dB), the predicted BER and the measured
BER. For example:

You can use the complementary error function
(erfc()) to compute the predicted error rate:

𝑃(𝑥 < 𝑡) = 1
2erfc ԛ

−𝑡
√2

ԧ

where 𝑡 is the normalized threshold (the average sig-
nal voltage divided by the noise RMS voltage). Note
that in this case the threshold (0 V) is actually nega-
tive relative to the mean signal voltage.
Fill in the spreadsheet with a signal voltage of 1 V

(you may need to change this in the lab) and RMS
noise voltages that will result in SNRs of between 6
and 12 dB in steps of about 1.5 dB.
Create a chart similar to the one below showing

the predicted BER for this range of SNRs (you will
add the measured curve in your final report).
Submit a PDF file containing the usual identifica-

tion information and a printout of your spreadsheet
including the graph of predicted BER vs SNR.
To save time you may enter the FPGA design be-

fore the lab. In this case you should save it as a
project archive rather than a collection of files. Use

Project -> Archive Project to create the .qar archive
file and Project -> Restore Archived Project to restore
the project directory from the .qar file.

Lab Report

Submit the usual identification information and a re-
port in PDF format containing the following:

• your FPGA block diagram (schematic)

• the ’scope screen capture showing the noise
waveform including the measured average and
RMS voltages

• a table from your spreadsheet showing the cal-
culation of the predicted and measured BER.
The BER values should range from about 10ႼႲ
to about 10ႼႷ.

• a plot showing both predicted and measured
BER formatted as follows:

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

5.0 7.0 9.0 11.0 13.0

B
it

 E
rr

o
r 

R
a

te

SNR (dB)

BER vs SNR

predicted

measured

6


