Solutions to Assignment 3

Corrected bit period in question 1 to $\frac{1}{125 \times 10^{6}}=8 \mathrm{~ns}$.

Question 1

The 4B5B Idle symbol is '11111'. When encoded using MLT-3 this results in a transition every bit interval (every $\frac{1}{125 \times 10^{6}}=8 \mathrm{~ns}$). The voltage levels are 0 and $\pm 1 \mathrm{~V}$. The waveform is thus:

Question 2

A channel excess bandwidth parameter (α) of 0.33 means that the total (maximum) bandwidth of the channel is $1+\alpha=1.33$ times the minimum required for no ISI. The gain of the channel is zero $(-\infty \mathrm{dB})$ at a frequency of 60 MHz and so this is the total channel bandwidth. The minimum bandwidth for no ISI is $\frac{60}{1.33}=45 \mathrm{MHz}$. The minimum bandwidth is half of the symbol rate for which there would be no ISI so this symbol rate is $2 \times 45=90 \mathrm{MHz}$.

Question 3

If a bit rate of $2 \mathrm{Mb} / \mathrm{s}$ is transmitted over a BSC there are 2 million channel uses per second. If the channel has a capacity of $1 \mathrm{Mb} / \mathrm{s}$ then the capacity is $\frac{1 \times 10^{6}}{2 \times 10^{6}}=0.5$ bits per channel usage. The equation for the capacity (C) vs BER (p) for the BSC is:

$$
C=1-\left(-p \log _{2} p-(1-p) \log _{2}(1-p)\right)
$$

There is no closed-form solution for p but we can find a numerical solution. You can re-write the equation as

$$
1-\left(-p \log _{2} p-(1-p) \log _{2}(1-p)\right)-0.5=0
$$

and solve for the roots of the equation. From the shape of the curve we know there will be two solutions: one between 0 and 0.5 and one between 0.5 and $1)$. There are many ways to find the roots:

- Use a calculator. For example, on the Sharp ELW516XBSL enter the equation in the display as a function of x and use Math->Solver to find the roots.
- Use a spreadsheet. You can enter the value of p in one cell, the equation in another and either iterate one value manually, compute the equation for a range of values or use the "solver" feature. For example, we can plot capacity vs p for $p=0.85$ to 0.97 to find one of the roots:

- Use a root-finding function in a numerical analysis program such as fzero from Matlab or Octave.
- Use a web site such as Wolfram Alpha which provides an on-line front-end to Mathematica's numerical analysis features.

Screen captures from the last method are as follows:

Input:

$$
1-\left(-p \log _{2}(p)-(1-p) \log _{2}(1-p)\right)-0.5=0
$$

Root plot:

$$
\begin{aligned}
& \text { Solutions: } \\
& \qquad\binom{p=0.110028}{p=0.889972}
\end{aligned}
$$

Thus the capacity is $1 \mathrm{Mb} / \mathrm{s}$ when the BER is 0.11 or 0.89 .

Question 4

To find the remainder we can write the polynomial $x^{6}+1$ as 1000001 and $x^{2}+1$ as 101 and do long polynomial division using the arithmetic rules for coefficients from GF(2):

10101

101|1000001
101

010

100
101

010

101
101

00
So the remainder is 0 .
Note that this is not the CRC.

Question 5
For a $100 \mathrm{Mb} / \mathrm{s}$ Ethernet switch with 8 ports where packets are continuously being received on each port:
(a) if the destinations of the packets are equally divided among the 8 ports, then a total of $100 \mathrm{Mb} / \mathrm{s}$
($8 \times \frac{1}{8} \times 100 \mathrm{Mb} / \mathrm{s}$) will be output on each port. The total throughput will thus be $800 \mathrm{Mb} / \mathrm{s}$.
(b) if the destinations of the packets are all the same then only that one port will have any traffic flowing out of it and the throughput will be $100 \mathrm{Mb} / \mathrm{s}$.

