Solutions to Assignment 2

Corrected answer to Question 2 (refractive index $n=\frac{1}{\sqrt{\varepsilon_{r}}}$).

Question 1

According to the Friis equation the received power is:

$$
P_{R}=P_{T} G_{T} G_{R}\left(\frac{\lambda}{4 \pi d}\right)^{2}
$$

For each of the scenarios in this question we select the frequency band that would result in the highest received signal power. However, since the transmit power $\left(P_{T}\right)$ and distance $\left(\left(\frac{1}{4 \pi d}\right)^{2}\right)$ are the same at both frequencies, we can base the decision on the product $G_{T} G_{R} \lambda^{2}$.

At 2.4 GHz the wavelength is $\lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{2.4 \times 10^{9}}=$ 0.125 m . and at 5 GHz the wavelength is $\lambda=\frac{3 \times 10^{8}}{5 \times 10^{9}}=$ 0.06 m .
(a) The path loss (gain) ${ }^{1}$ defined as $\left(\frac{\lambda}{4 \pi d}\right)^{2}$ is higher (lower gain) at 5 GHz by a factor of $\left(\frac{5}{2.4}\right)^{2}=$ $4.3=6.4 \mathrm{~dB}$ (the received signal is 6.4 dB lower at 5 GHz).
(b) For an effective areas of $A_{e}=0.5 \mathrm{~m}^{2}$ the transmit and receive antenna gains at 2.4 GHz are $G=$ $\frac{4 \pi A_{e}}{\lambda^{2}}=\frac{4 \pi \times 0.5}{0.125^{2}}=402=26.0 \mathrm{~dB}$ each. At 5 GHz the antenna gains are $G=\frac{4 \pi 0.5}{0.06^{2}}=1745=$ 32.4 dB each. At 5 GHz each antenna has 6.4 dB higher gain.
Because the received signal power is affected by both the transmit and receive antenna gains, the signal power at 5 GHz will be 6 dB higher if both antennas are directional. Thus for antennas with equal effective areas we would choose the 5 GHz band.
(c) (i) If one antenna was omni-directional (0 dB gain) the difference in antenna gains would be 6.4 dB and the received power would be

[^0]the same in both cases. There would not be any advantage to either frequency.
(ii) If both antennas were omni-directional the antenna gains would be the same at both frequencies and the received power would be 6.4 dB lower at 5 GHz . In this case we would choose the 2.4 GHz band.

Question 2

Using the datasheet for Corning SMF-28 singlemode fiber:
(a) The refractive index, $n=\frac{1}{\sqrt{\varepsilon_{r}}}$ is specified as 1.4676 at 1310 nm and 1.4682 at 1550 nm corresponding to velocities of propagation of $v=\frac{c}{n} \approx$ $2.04 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(b) At a 1550 nm wavelength the maximum attenuation is specified as $\leq 0.18 \mathrm{~dB} / \mathrm{km}$. The attenuation for a 20 km link would be $\leq 3.6 \mathrm{~dB}$.
(c) For a signal with a bandwidth of 10 GHz transmitted at a center wavelength of 1530 nm .
(i) The optical signal's frequency is $f=\frac{c}{\lambda}=$ $\frac{3 \times 10^{8}}{1530 \times 10^{-9}}=196 \mathrm{THz}$ and the signal's bandwidth is $\frac{10 \times 10^{9}}{196 \times 10^{12}} \approx 51.0 \times 10^{-6}$ times the carrier frequency.
(ii) The wavelength span is $51.0 \times 10^{-6} \times 1530=$ $78.0 \times 10^{-3} \mathrm{~nm}$.
(iii) The maximum (chromatic) dispersion is specified as $18 \mathrm{ps} /(\mathrm{nm} \cdot \mathrm{km})$ at 1550 nm . Assuming the same value ${ }^{2}$ for 1530 nm , a 20 km link with a 7.8 nm wavelength span would have a maximum dispersion of $18 \times$ $78 \times 10^{-3} \times 20=28 \mathrm{ps}$.
(iv) For a symbol rate of 1 GHz the symbol duration is 1 ns and the ratio of dispersion to symbol duration is $28 / 1000=2.8 \%$.

[^1]
Question 3

If delay (τ) increases linearly from 5.000000 s to 5.000100 s as the frequency (f) increases from 1 to 1.1 kHz , the delay at 1.05 kHz would be 5.000050 .

The group delay is defined as the change (or slope) of the phase shift, given by $-2 \pi f \tau$, versus angular frequency (ω).

There are various ways to find a solution. As an approximation we could assume a constant group delay (constant slope) between the two frequencies. The difference in phase is $-2 \pi\left(f_{2} \tau_{2}-f_{1} \tau_{1}\right)$ and the difference in (angular) frequency is $2 \pi\left(f_{2}-f_{1}\right)$. The value of the group delay is:

$$
\frac{-(1100 \times 5.000100-1000 \times 5.000000)}{1100-1000}=-5.001 \mathrm{~s}
$$

We could also write an equation for phase versus frequency:

$$
\Delta \Theta(f)=-2 \pi f \tau(f)=-2 \pi f\left(5+1 \times 10^{-6}(f-1000)\right)
$$

and the derivative with respect to (angular) frequency:

$$
\frac{d \Delta \Theta(f)}{d f}=-5-1 \times 10^{-6}(2 f-1000)
$$

which at $\mathrm{f}=1.05 \mathrm{kHz}$ is also -5.001 s .

Question 4

A normal distribution has tails that extend infinitely in both directions away from the mean. This would imply a non-zero probability of having a negative number of lighting strikes per month. This is clearly not possible. This situation usually arises from fitting measured data to a poorly-chosen model.
(a) Assuming the model is correct, the probability of fewer than 20 lightning strikes in one month is $P\left(t=\frac{v-\mu}{\sigma}\right)=P\left(\frac{20-10}{6}\right)=P(1.67)=0.95254$ The probability of more than 20 lightning strings is thus about 5%.
(b) The probability there are fewer than -2 lightning strikes is zero as discussed above.

Question 5

If a low-to-high transition encodes a ' 1 ' bit, the waveform that would be used to transmit an 8 -bitlong $10 \mathrm{Mb} / \mathrm{s}$ Manchester-encoded dotting sequence (alternating 1's and 0's) beginning with a 1 would be:

The frequency of the Manchester-encoded waveform is half of the bit rate or 5 MHz .

[^0]: ${ }^{1}$ This number much less than 1 so is typically called the path loss but strictly speaking it's a "path gain." When specifying it in dB we simply change the sign and call it a path loss.

[^1]: ${ }^{2}$ You could also interpolate the value at 1530 from the values at 1550 and 1625 nm .

