Solutions to Assignment 1

Question 1

(a) The entropy of this message source in bits per message is

$$\sum_{i} P_i \log_2(P_i) = 1.78$$

which can be conveniently computed with a spreadsheet:

	A	В
1	45%	=A1*LOG(A1,2)
2	30%	=A2*LOG(A2,2)
3	15%	=A3*LOG(A3,2)
4	10%	=A4*LOG(A4,2)
5		=SUM(B1:B4)

- (b) If one wind direction report is generated every two seconds, the information rate of the source in bits per second is 1.78 bits / 2 seconds = 0.89 bits/second.
- (c) If the best possible compression method was used, the data rate would be the same as the information rate: 60 minutes/hour \times 60 second-s/minute $\times 0.89 = 3208$ bits or about 401 bytes. This many bytes would be transmitted in one hour and would have to be stored.
- (d) If each direction was encoded using 2 bits per message then $60 \times 60 \times 2/2 = 3600$ bits (450 bytes) would be required to store these messages.
- (e) (i) The information rate depends only the message probabilities so it would not change. (ii) The data rate increases to 2 bits / 2 seconds = 1 bps when each message is encoded using two bits per message.

Question 2

The duration of each frame, including the header (32 bits) plus data payload ($8 \times 8=64$ bits) transmitted at 500 kbps and the 20 μ s gap between frames is:

$$\frac{32+64}{500\times10^3}+20\times10^{-6}=212\,\mu\text{s}$$

To compute the throughput of the highest-priority control unit we divide the useful payload bits delivered by this unit by the total time required to transmit the frame.

In this case one out of every 4 frames is used by the highest-priority unit so on average the time required to transmit one frame is 4 frames. The duration of 4 frames is $4 \times 212 = 848 \ \mu s$.

The throughput is thus:

$$\frac{64 \text{ bits}}{848 \times 10^{-6} \text{ bits/s}} \approx 75.5 \text{ kbps}$$

Question 3

The Unicode character "CANADIAN SYLLABICS SH" has a code point of U+1525. In binary this is 0001 0101 0010 0101 which must be encoded as three bytes using the third row of Table 3-6 in the Unicode Standard. In this case zzzz is 0001, yyyy yy is 0101 00 and xx xxxx is 10 0101. The binary values of the three bytes in the UTF-8 encoding are thus: 1110 0001, 10 01 0100 and 10 10 0101 which in hex are 0xE1, 0x94 and 0xA5.

Question 4

(a) Each answer will be different. For example, the ID number 123456 (base 10) can be converted using a calculator to hexadecimal: $1E240_{16}$. To make a 32-bit number we add leading zeros to make up 8 hex digits: 0001 E240. In binary this is:

0000 0000 0000 0001 1110 0010 0100 0000

(b) The same number using base-16 (hexadecimal) notation is 0x1E240 or with leading zeros (which don't change the value): 0x0001 E240.

(c) When a number is stored in memory or transmitted using little-endian byte order the bytes are stored or transmitted in order from the LS to MS byte. In this example the value of the four bytes (in hexadecimal notation) are:

40, E2, 01, 00

(d) The corresponding bits written in conventional (msb-first) order (and the bytes still in littleendian byte order) are:

0100 0000, 1110 0010, 0000 0001, 0000 0000

Writing the bits of each byte in lsb-first order we have:

0000 0010, 0100 0111, 1000 0000, 0000 0000

Question 5

The character 'A' (0x41) with 7 bits/character and no parity would be sent as a start bit (positive, 0), 7 data bits in lsb-first order (1000 001), and a stop bit (negative, 1). The transmitted waveform would thus be:

$$S - + + + + - T$$

where S represents the start bit (high), + and – represent the data bits (positive or negative respectively) and *T* represents the stop bit (low). The bit duration is $\frac{1}{4800} = 208 \ \mu s$. If the modem's UART was set to 19200 bps it would wait for a rising edge and then sample the waveform four times faster, seeing the waveform:

++++ ---- ++++ ++++ +++++ +++++ ----- -----

which would be interpreted, if the UART was configured for a start bit, 8 data bits and a stop bit as:

where F indicates a framing error (a high level where a stop bit was expected) and M indicates a mark level in-between characters. The received bits are 000 1111 0 in lsb-first order or 0111 1000 in msb-first order or 0x78 which is a lower-case 'x' in ASCII or UTF-8 encodings.

The modem would detect a framing error after the character because the input would be high at the location where a stop bit (low) was expected (at the first bit position marked *F* above). The modem would wait for the next rising edge of the waveform (which would be the next character in this case).