
ELEX 3525 : Data Communications
2016 Fall Term

Data Transmission over Bandlimited Channels

is lecture describes limits on the maximum symbol and information rate for band-limited channels.
Aer this lecture you should be able to: determine if a channel meets the Nyquist no-ISI criteria and, if so, the maximum
signalling rate without ISI; determine the maximum error-free information rate over the BSC and AWGN channels; deter-
mine the specific conditions under which these two limits apply. You should be able to perform computations involving the
OFDM symbol rate, sampling rate, block size and guard interval.

Introduction

All practical channels are band-limited – either low-
pass or band-pass. ere are two theorems, the
Nyquist no-ISI criteria and Shannon’s capacity the-
orem, that provide some guidance about maximum
data rates that can be achieved over a bandlimited
channel.

Inter-Symbol Interference

Bandwidth-limited low-pass channels attenuate
higher-frequency components of a signal. is
“rounds off” pulse shapes which increases their rise
and fall times and extends their durations. Each
symbol then extends into subsequently-transmitted
symbols. is causes one symbol to interfere with
subsequently-transmitted symbols. is is called
inter-symbol interference (ISI).
Exercise 1: Draw a square pulse of durationT. Draw the pulse

after it has passed through a linear low-pass channel that re-

sults in rise and fall times of T/. Draw the output for an input

pulse of the opposite polarity. Use the principle of superpo-

sition to draw the output of the channel for a positive input

pulse followed by a negative input pulse.

Nyquist no-ISI Criteria in Time

Consider a system that transmits symbols that are
infinitely-short pulses of different amplitudes. A low-
pass channel will limit the rise time of these impulses
and cause them to be extended in time. However,
if the response of the channel to these impulses is
zero aer one symbol period then the impulse will
not cause ISI to the next impulse. And if the chan-
nel impulse response passes through zero at all future
multiples of the symbol period then the impulses will

not interfere with subsequent impulses. is is the
Nyquist no-ISI condition stated in the time domain.

Exercise 2: What is the impulse response of a channel that

does not alter its input? Does this impulse response meet the

Nyquist condition? Will it result in ISI?

An example of an impulse response that meet this
criteria is the sinc() function:

h(t) =
sin(πt/T)

πt/T

which has value 1 at t =  and 0 at multiples of T.
Exercise 3: Draw the impulse response of a channel that

meets theNyquist condition but is composedof straight lines.

Nyquist no-ISI Criteria in Frequency

It is possible to determine the conditions for a chan-
nel’s transfer function to result in no ISI. A common
way of stating this condition is that the channel’s fre-
quency response must have odd symmetry around
half of the symbol frequency1 ( 

T ):

H(

T

+ f) + H∗(

T

− f) =  for  ≤ |f| ≤ 
T

1e asterisk indicates complex conjugate. is can be ig-
nored for real(izable) baseband channels.
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Just as there could be many impulse responses that
are zero at multiples of the symbol period, there are
many transfer functions that result in no ISI. For ex-
ample, the following two straight-line transfer func-
tions meet the no-ISI condition2:

e “brick-wall” filter (blue) has a response that is
1 below half of the symbol rate (  ·


T = 

T where 
T is

the symbol rate) and zero above that. Although such
a filter would have theminimum bandwidth required
to meet the Nyquist condition for a symbol period
T, it is not physically realizable and has other prob-
lems as described below. e filter with the straight-
line transfer function is more practical but still dif-
ficult to implement. A common and more practical
transfer function is the so-called raised-cosine func-
tion which is a half-cycle of a cosine function offset to
have a minimum value of zero and centered around
half of the symbol rate:

Note that it is the symmetry around the frequency

T that ensures there will be no ISI rather than the
exact filter shape. uswe are free to implement other
transfer functions if they make the implementation
easier.
Exercise 4: Draw the magnitude of a raised-cosine transfer

function that would allow transmission of impulses at a rate of

800 kHz with no interference between the impulses.

Oenwe cannot control over the impulse response
or transfer function of the channel andweneed to add
filtering at the transmit or receive sides of the channel

2For simplicity we only show one component (the real or
imaginary portion) of the transfer function.

so that the overall transfer functionmeets theNyquist
criteria. is is called equalization and is described
below.

Pulse-Shaping Filter

Note that the no-ISI criteria ensures that a channel
produces no ISI when transmittign impulses, not for
the square pulses typically used by line codes.

However, we can treat the transmitter as including
a filter that converts impulses to pulses. We then con-
sider that the overall channel includes this (im)pulse-
shaping filter. So for transmitters that generate pulses
it is the combination of this hypothetical impulse-
shaping filter and the channel that has to meet the
Nyquist criteria:

meets Nyquist no-ISI
         criteria

pulse-shaping
filter

channel

   no ISI at
t=0, T, 2T, . . .

h(t)

T

transmitter

data
equalizer

Exercise 5: Draw the impulse response of a filter than con-

verts input impulses to pulses of duration T? Draw the signal

after the pulse-shaping filter in the diagram above.

Equalization

To avoid ISI, the total channel response including
transmit filters, the channel and the receiver filter(s)
have to meet the Nyquist no-ISI condition.

When the channel by itself doesn’t meet the no-
ISI conditions, the transmitter and/or receiver can
use a filter called an equalizer that modifies the over-
all transfer function to ensure the no-ISI condition is
met.

Transmitter and receiver filters typically have other
functions beside equalization. For example, the
transmit filter may limit the bandwidth of the trans-
mitted signal to limit interference to users on adja-
cent channels. e receiver filter may filter out noise
and interference from adjacent channels and thus im-
prove the SNR and SIR. e communication system
designer would design the transmitter and receiver
filters to meet both the filtering and equalization re-
quirements.
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A common situation is a flat channel where inter-
ference is not an issue. In this case a reasonable ap-
proach is to put half of the filtering at the transmitter
and half at the receiver. In order to achieve an overall
raised cosine transfer function, each side has to use
a “root raised cosine” (RRC) transfer function. e
product of the two filters is thus the desired raised-
cosine function which meets the no-ISI condition.

Equalizers also have to compensate for the (imag-
inary) pulse-shaping filter. Since the pulse-shaping
filter has a low-pass (sinc(f)) shape, the equalizer re-
sponse hasmore gain at higher frequencies that a true
raised-cosine function 3.

Excess Bandwidth

Channels can have different transitions between the
passband and the stopband of the transfer function
while still meeting the no-ISI conditions.

A parameter, α, which defines how much wider
the channel is than the minimum is called the “excess
bandwidth” parameter. It is defined as:

α =
total bandwidth − minimum bandwidth

minimum bandwidth

for example, if B is the maximum channel bandwidth
(frequency at which H(f) = ) and T is the symbol
rate so that 

T is the minimum possible bandwidth,
then α = B−/(T)

/(T) = BT− .

Why would we make the bandwidth larger than
necessary? e value of α affects the shape of the im-
pulse response. Larger values of α result in less over-
shoot and make the received pulse more “square” and
this in turn makes the receiver less sensitive to varia-
tions inwhen the receiver samples the received signal.

e following diagram shows how α for a raised-
cosine transfer function affects the impulse response:

3Sometimes called “sinc compensation.”

Larger values of excess bandwidth (wider band-
width channels) results in less “ringing” of the im-
pulse response which in turn reduces the amount of
ISI near the sampling point. is makes the receiver
less sensitive to errors in where (when) it samples the
received signal.

Nyquist Criteria and Bit Rate

Note that the symbol rate limitations defined by the
Nyquist criteria do not determine the maximum bit
rate that can be achieved over a channel – they only
determine the maximum symbol rate without ISI.

We can increase the bit rate by increasing the num-
ber of bits per symbol (e.g. by using multiple levels).
For example, using symbols each of which could be at
one of 1024 levels we can transmit 10 bits per symbol.

Exercise 6: A channel has a 3 kHz bandwidth and meets the

Nyquist non-ISI conditions with α = . How many levels are

required to transmit 24 kb/s over this channel usingmulti-level

signalling?

We can also design receivers that recover the trans-
mitted data even in the presence of ISI. For example,
if we know the symbols that have been transmitted in
the past and we know the channel impulse response
then we can predict the ISI and subtract it from the
current received symbols. is is called decision-
feedback equalization (DFE).
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Adaptive Equalizers

In many communication systems the transfer func-
tion of the channel cannot be predicted ahead of
time. One example is a modem used over the pub-
lic switched telephone network (PSTN). Each phone
call will result in a channel that includes different
“loops” and thus different frequency responses. An-
other example is multipath propagation in wireless
networks. e channel impulse response changes as
the receiver, transmitter or objects in the environ-
ment move around.

To compensate for the time-varying channel im-
pulse response the receiver can be designed to adjust
the receiver equalizer filter response using various al-
gorithms.

OFDM

An alternative to equalization is a technique called
Orthogonal Frequency Division Multiplexing
(OFDM). An OFDM transmitter collects a group
of N symbols at a time and uses them to modulate
N “subcarriers” (modulation is covered in another
course). ese subcarriers are transmitted in parallel
over the same time duration that would have been
required to transmit the N symbols serially. e net
effect is to reduce the symbol rate by a factor N but
with no impact on the overall bit rate.

We usually insert a “guard time” (or “guard inter-
val”) in-between symbols. Its duration is longer than
the duration of the channel impulse response.

Since no data is transmitted during the guard time,
this reduces the average data rate. However, the guard
time is typically a small fraction of theOFDM symbol
duration and so the impact on the overall throughput
is relatively small.

Rather than transmitting nothing during the guard
interval, a small part of the end of the block ofN sam-
ples is copied to the start of the symbol and transmit-
ted during the guard time. is is called a “cyclic” or
“periodic” extension.

e value of N is typically a power of 2 to allow ef-
ficient implementation using the Fast Fourier Trans-
form (FFT) algorithm.

OFDM has become more popular than adaptive
equalization because it is simpler to implement and
more robust. is is partly because it is not neces-
sary to estimate the channel to correct for ISI. OFDM
is used by most ADSL, WLAN and 4G cellular stan-
dards.

Exercise 7: The 802.11g WLAN standard uses OFDM with a

sampling rate of 20 MHz, with N =  and guard interval of

.μs. What is the total durationof eachOFDMblock, including

the guard interval? How long is the guard time?

Shannon Capacity

eShannonCapacity of a channel is the information
rate above which it is not possible to transmit data
with an arbitrarily low error rate.

One example of a channel is the Binary Symmetric
Channel (BSC). is channel transmits discrete bits
(0 or 1) with a bit error probability (BER) of p. e
capacity of the BSC in units of information bit per
“channel use” (transmitted bit) is :

C =  − (p log p+ ( − p) log( − p))

which is 0 for p = . (when each transmitted bit
is equally likely to be received right or wrong) and 1
when p =  (the error-free channel) or when p = 
(a perfectly inverting channel).
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Exercise 8: What is capacity of a binary channel with a BER of

 (assuming the same BER for 0’s and 1’s)?

For a continuous channel corrupted by Additive
White Gaussian Noise (AWGN), the capacity can be
shown to be:

C = B log

(
 +

S
N

)
where C is the capacity (b/s), B is the bandwidth (Hz)
and S

N is the signal to noise (power) ratio.
e Shannon limit does not say that you can’t

transmit data faster than this limit, only that if you
do, you can’t reduce the error rate to an arbitrarily
low value. However, in practice, attempting to trans-
mit at information rates above capacity results in high
error rates.
Exercise 9: Can we use compression to transmit information

faster than the (Shannon) capacity of a channel? To transmit

data faster than capacity? Explain.

Shannon’s work also does not specify how to
achieve capacity. However, Shannon’s work does
hint that using error-correcting codeswith long code-
words (to be discussed later) should allow us to
achieve arbitrarily-low error rates as long as we limit
the information rate to less than the channel capacity.
Exercise 10: What is the channel capacity of a 4 kHz channel

with an SNR of 30dB?

Some systems using modern forward error-
correcting (FEC) codes such as Low Density Parity
Check (LDPC) codes can communicate at very low
error rates over AWGN channels with SNRs only a
fraction of a dB more than the minimum required by
the capacity theorem.
Exercise 11: What do theNyquist no-ISI criteria and the Shan-

non Capacity Theorem limit? What channel parameters deter-

mine these limits?
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