
ELEX 3525 : Data Communications
2016 Fall Term

PN Sequences and Scramblers

Aer this lecture you should be able to: distinguish between random and pseudo-random signals, classify signals as PN,
PRBS, and/or ML PRBS signals according to their quantization, periodicity, mean value and maximum run lengths, draw
the schematic of a LFSR ML PRBS generator, explain two reasons why scrambling may be desirable, select between scram-
bling and encryption based on the need for secrecy, select between additive andmultiplicative scramblers based on the avail-
ability of framing information, explain the error patterns resulting from erroneous input to a self-synchronizing scrambler,
and implement (draw schematic of) additive scramblers and self-synchronizing multiplicative scramblers.

Random and Pseudo-Random Signals

A random signal is one whose value cannot be pre-
dicted. An example is the thermal noise generated by
a resistor or transistor. Some statistics of the noise
such as the power and spectrum may be known, but
we can’t predict the future voltage of the the wave-
form.

It is sometimes useful to generate waveforms that
appear random in some sense (e.g. having the same
statistics) but whose values are predictable. ese
types of signals are called “pseudo-random” signals.
If the pseudo-random signal is noise-like it’s called a
pseudo-noise (PN) signal, and if it’s two-valued (0,1)
it’s called a pseudo-random bit sequence (PRBS).

So we have the following taxonomy of random sig-
nals:
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PN and PRBS signals have many important appli-
cations in communications systems. In this lecture
we will study the properties of a type of PRBS called
a maximal-length (ML) sequence, learn how to gen-
erate these sequences and look at one of their appli-
cations – “scrambling.” Other applications include
spread-spectrum systems and the generation of test
signals.

Properties of a ML PRBS

ML PRBS sequences, sometimes called m-sequences,
have a number of interesting properties including:

• the sequence is called maximum-length because
the sequence has a period of K −  where K is
the number of bits of state in the generator. is
is one less than the maximum number of states
of a K-bit counter.

• there are K− ones and K− −  zeros.

• one-half of the runs have length 1, one-quarter
have length 2, etc. (except that there is one run
of length K ones and one of length K-1 zeros)

• the generator runs through every possible set of
states except all-zero,

• adding any (circular) shi of the sequence to it-
self is also an m-sequence

Generating aML PRBS

AML PRBS can be implemented using a shi register
whose input is the modulo-2 sum of other taps.
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is is known as a linear-feedback shi register
(LFSR) generator. ere are published tables showing
the LFSR tap connections that result in a ML PRBS
generator.
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If the contents of the shi register ever become all
zero then all future values will be zero. is is why
the generator has only K −  states – the state corre-
sponding to all zeros is not allowed.
Exercise 1: How many flip-flops would be required to gener-

ate a ML PRBS of period 8191? How many ones would the se-

quence have? What is the longest sequence of 0’s? Howmany

runs of 5 ones are there?

Scrambling

Much real-world data contains repetitive compo-
nents. Examples include padding/fill sequences
transmitted when there is no data to be sent, a dig-
itized image with consecutive scan lines of the same
color, video that stays constant from one frame to the
next, or repeated values (e.g. zeros) in a file being
transmitted.

Two possible problems are introduced by this non-
random data:

• Periodic components of a signal generate dis-
crete spectral components that have larger than
average power. ese discrete frequency com-
ponents can cause interference to wireless de-
vices using that frequency and such a device will
not get regulatory approval.

• Long sequences of certain values may result in a
signal that may not have enough transitions to
allow for clock recovery.

To solve these problems most communication sys-
tems use “scramblers” to remove periodicities and
long constant sequences in the data. Two common
types of scramblers are described below.

However, it is important to understand that a
scrambling is not encryption and does not provide se-
crecy.
Exercise 2: Why not?

Frame-Synchronous Scramblers

e simplest type of scrambler consists of aML PRBS
generator whose output is exclusive-OR’ed with the
data. ese types of scramblers are called “addi-
tive” scramblers because the PN sequence is added,

modulo-2, to the data (i.e. it is exclusive-or’ed with
the data).
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Since the scrambling sequence needs to be the
same at the transmitter and receiver, this type of
scrambler is only practical for systems that have a
frame structure that can be used to synchronise the
sequences. e state of the ML PRBS generator can
be set to a specific value at the start of each frame.
is value can be either a fixed value for every frame
or it can be an arbitrary (typically pseudo-random)
value transmitted in the frame’s preamble or header.

Self-Synchronizing Scramblers

Some protocols don’t use framing and operate on a
continuous sequence of bits. A scrambler for such a
system needs to synchronize the descrambler to the
scrambler without any external information so it can
recover from a loss of synchronization.

Self-synchronizing scramblers are sometimes
called multiplicative scramblers because scrambling
and descrambling are implemented using polynomial
division and multiplication. e scrambled output,
S(x), is generated at the transmitter by dividing the
data by a generator polynomial G(x):

S(x) =
M(x)
G(x)

and transmitting the quotient. e division opera-
tion is carried out bit-by-bit and each step of the di-
vision results in a new scrambled bit. e receiver
de-scrambles the scrambled signal by multiplying by
the same generator polynomial:

M(x) = S(x)G(x)

As shown in a previous lecture we can implement
polynomial division and multiplication using shi
registers and xor gates.

For example, the ITU-T V.34 modem specifi-
cation defines a self-synchronizing scrambler for
calling mode that uses the generating polynomial:
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GPC(x) = + x− + x− (negative powers of x are
used to indicate thatmore negative orders correspond
to more-delayed bits). e scrambler and descram-
bler can be implemented as shown in the following
figures (the numbers in boxes are delays, not polyno-
mial order):

One problemwith self-synchronizing scramblers is
that an error in the received data pattern can result
in multiple errors in the de-scrambled data. is is
called error propagation.

Exercise 3: How many errors will appear in the output of a

V.34 descrambler if there is one input error?

Certain input sequences could set the scrambler
state to zero and terminate the scrambling of long se-
quences of zero. Practical scramblers and descram-
blers count the number of consecutive ‘0’ bits trans-
mitted to detect this condition and invert the next bit.

PRBS Test Sequences

We can test a communication system by transmitting
a PRBS sequence over the channel and comparing the
received sequence to a locally-generated copy. Since
the hardware to generate a very longML-PRBS is very
simple, it is practical to use long sequences for testing.

One problem that arises is how to synchronize the
transmitter and a remote receiver. is can be done
by loading the receiver PRBS generator’s shi register
with anyK consecutive received bits. As long as there
were no errors in these K bits then from that point on
the transmit and receive generators will generate the
same sequences:
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If the receiver ever becomes un-synchronized with
the transmitter the error rate will become very high.
When this is detected at the receiver the local PRBS
generator can resynchronize as above.
Exercise 4: In the diagram above, what two signals would the

receiver compare to detect errors?
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