
ELEX 3525 : Data Communications
2016 Fall Term

Polynomials in GF(2) and CRCs

is lecture covers arithmetic with polynomials that have coefficients from GF(2). ese operations are the basis of many
useful telecommunications functions including computation of cyclic redundancy checks (CRCs).
Aer this lecture you should be able to: represent a sequence of bits as a polynomial with coefficients from GF(2), compute
the result of multiplying a polynomial by xn, compute the result of dividing two polynomials, compute the value of a CRC
given the message and generator polynomials, and determine if a CRC computation indicates an error has occurred. You
should be able to determine if a CRC is guaranteed to detect a particular error sequence.

GF(2)

A Galois field, denoted as GF(q), is a set of integers
and two operations that have certain properties. One
of the properties is closure – the result of any opera-
tion on two elements of the field is also in the field.

For example, GF() includes two integers (0 and
1) and the addition and multiplication operations are
defined as addition and multiplication with the result
taken modulo-2.
Exercise 1: Write the addition and multiplication tables for

GF(). What logic function canbeused to implementmodulo-

2 addition? Modulo-2 multiplication?

Exercise 2: What are the possible values of the results if we

used values 0 and 1 but the regular definitions of addition and

multiplication? Would this be a field?

Representing Codewords as Polynomials

us far we’ve represented codewords as sequences
of bits. We can also represent codewords as polyno-
mials with coefficients from GF(). For example, the
polynomial:

x + x + x + x = x + x +

can be used to represent the codeword 1011.
Exercise 3: What is the polynomial representation of the

codeword 01101?

Polynomials are used to describe codes because
many properties of codes can be derived from the
mathematical properties of polynomials.

Note that it is the coefficients of the polynomial
that are important. e polynomial itself is never
evaluated and the variable x that appears in these
polynomials is just a dummy variable. ese polyno-
mials can thus also be viewed as binary numbers or

bit strings where the order of each term indicates the
bit position.

Polynomial Arithmetic

We can add, subtract, multiply and divide poly-
nomials with coefficients in GF(2). ese opera-
tions are the basis for many useful communication-
related functions including convolutional codes for
FEC (Forward Error Correction), CRCs (Cyclic Re-
dundancy Checks), and PRBS (Pseudo-Random Bit
Sequence) generators.

Exercise 4: What is the result of multiplying x + by x + x
if the coefficients are regular integers? If the coefficients are

values in GF()? Which result can be represented as a bit se-

quence?

Digital Implementation of Polynomial Arith-
metic

Arithmetic on polynomials with GF() coefficients
can be implemented with simple digital logic circuits.
Flip-flops, organized as shi registers, store the bits
of the message (coefficients equal to 1 or 0) and XOR
and AND gates are used to compute modulo-2 ad-
dition and multiplication. e bits corresponding to
codeword(s)/message(s) can be input and output se-
quentially, bit by bit, into the polynomial arithmetic
circuits.

It’s much simpler to do arithmetic using polynomi-
als inGF(2) than using regular integers becausewe do
not need to compute carries when computing results.

lec11.tex 1 2016-11-20 22:19

Cyclic Redundancy Checks

A Cyclic Redundancy Check (CRC) is a code used to
detect errors in a sequence of k data bits. A “code-
word” of n bits is transmitted for each k data bits. e
length of the CRC is thus n− k:

R�OO

R

HEXE '6'

e algorithm used to compute the CRC is as fol-
lows:

e data to be transmitted, treated as a polynomial,
is multiplied by the polynomial xn−k. is increases
the order of each term by n − k (or equivalently, ap-
pends n−k zero bits). is new polynomial,M(x), is
divided by a generator polynomial, G(x)1. e result
is a quotient and a remainder:

M(x)
G(x)

= Q(x) remainderR(x)

We then replace the last n− k bits of M(x) (which
were zero due to us having multiplied by xn−k) with
R(x). is is equivalent to adding (or subtracting
since polynomial addition and subtraction are the
same for coefficients in GF(2)) R(x) from M(x). is
ensuring that the new polynomial will be divisible by
G(x).

Note that n−k is one less than the number of terms
in G(x) since the remainder is always less then the
divisor. If we number the terms by the order of x, then
the highest order term will be xn−k.

1Generator polynomials “generate” other codewords, in this
case the CRC.

e receiver carries out the same polynomial divi-
sion operation on the combination of themessage bits
andCRC. If the remainder is not zero then at least one
of the bits must have changed and an error has been
detected.

Detecting Added/Deleted Zero Bits

We can add or remove any number of leading ze-
ros coefficients to M(x) without affecting its value or
the CRC. To allow the CRC to detect missing/added
leading zero bits, most implementations require that
some initial data bits (typically the first n−k) be com-
plemented.

Similarly, appending or deleting zeros to the end of
the message will also result in a zero remainder. We
can avoid this problem by complementing the CRC
before sending it. is generates a non-zero remain-
der but the value will be a specific value (the same for
all messages) if there are no errors.

Another way to detect missing/added lead-
ing/trailing zero bits is to include the length of the
message in the CRC computation.

Computing the CRC

Computing the CRC requires polynomial division.
e process involves repeated subtraction of the gen-
erator polynomial from themessage polynomial. Un-
like regular division, to compute the CRC we only
need to compute the remainder.

Exercise 5: If the generator polynomial is G(x) = x + x +
and the data to be protected is 1001, what are n− k,M(x) and
the CRC? Check your result. Invert the last bit of the CRC and

compute the remainder again.

2

A circuit to perform the division of the polynomi-
als can be implemented using a shi register (SR) that
holds the result of the intermediate remainder aer
each subtraction. e shi register only has to hold
(n− k) bits.

e diagram above2 shows a circuit that performs
polynomial division. e squares represent flip-flops
in the SR with the most significant bit of the inter-
mediate remainder in the right-most bit. e circles
labeled gi represent either a connection or no connec-
tion depending on the coefficient of G(x). e circles
with a plus represent modulo-2 addition (or subtrac-
tion) implemented using XOR gates. e input la-
belled a is the message.

e SR bits are initialized to zero (or ones) so that
the first n − k (data) bits are loaded into the SR un-
changed (or complemented). At each subsequent step
in the division the generator polynomial (represented
by the presence or absence of the connections labelled
gi) is or isn’t subtracted by the xor gates from the
intermediate remainder in the SR depending on the
value of themost significant bit of the quotient (right-
most bit of the SR). e next input bit is also ap-
pended to the intermediate remainder. At the end of
the process the shi register holds the final remainder
R(x)which is appended to the message as the CRC at
the transmitter or checked at the receiver.

Checking the CRC

At the receiver the same circuit can be used to divide
the received message and the appended remainder
polynomial by the generator polynomial. If the re-
mainder is zero then the received polynomialmust be
amultiple of the generator polynomial. is is always
the case when we subtract the remainder R(x) from
the message polynomial. erefore if the remainder
in the SR is non-zero then there must have been an
error.

CRC Error Detection Performance

CRC error detection will fail only if the error pattern
is a multiple of G(x).

If all the errors are located within an “error burst”
of length n−k then the error pattern cannot be amul-

2From Error Control Systems by S. B. Wicker.

tiple of G(x) and is guaranteed to be detected. How-
ever, theCRCwill also detectmost longer bursts since
they are unlikely to be a multiple of G(x).
Exercise 6: Is a 32-bit CRC guaranteed to detect 30 consecu-

tive errors? How about 30 errors evenly distributed within the

message?

A common situation is where the received bits
are completely random (e.g. noise being detected as
data). In this case the probability of not detecting
an error is the probability that a random sequence of
n− k bits matches the required checksum.
Exercise 7: What is the probability that a CRC of length n− k
bits will be the correct CRC for a randomly-chosen codeword?

Assuming random data, what is the undetected error proba-

bility for a 16-bit CRC? For a 32-bit CRC?

Standard CRC Generator Polynomials

ere are several CRC generator polynomials in com-
mon use. e most common lengths are 16 and 32
bits since these aremultiples of 8 bits. All(?) IEEE 802
standards use the same 32-bit CRC polynomial typi-
cally called “CRC-32”. e ITU has defined a 16-bit
CRC generator polynomial (“CRC-16-CCITT”) that
is also used in various standards.

3

