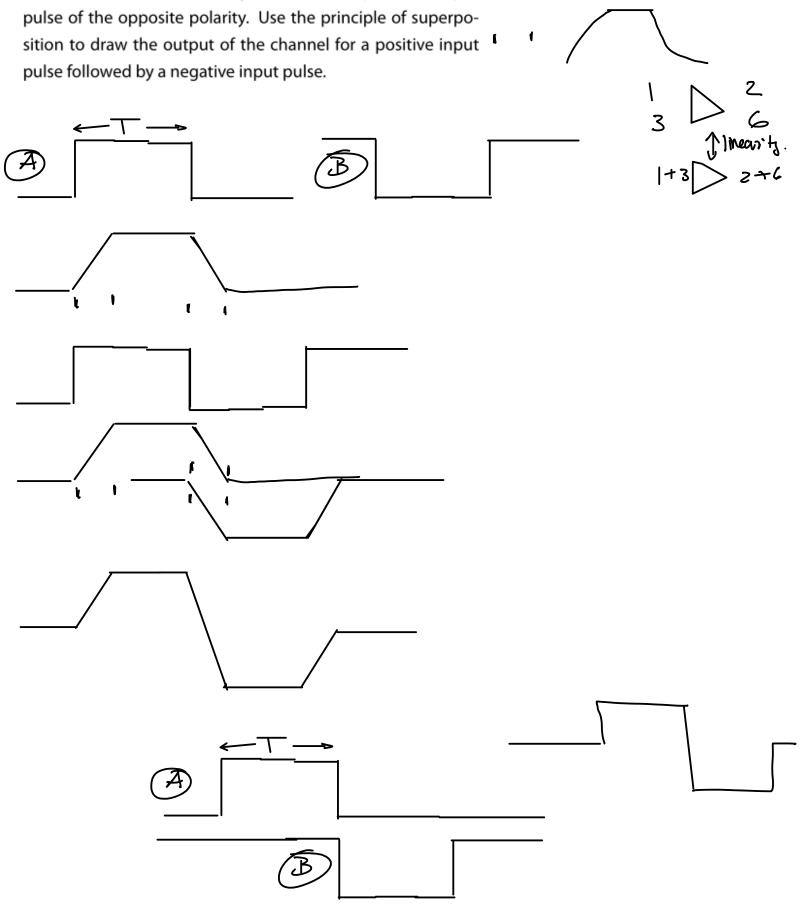
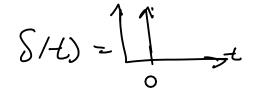
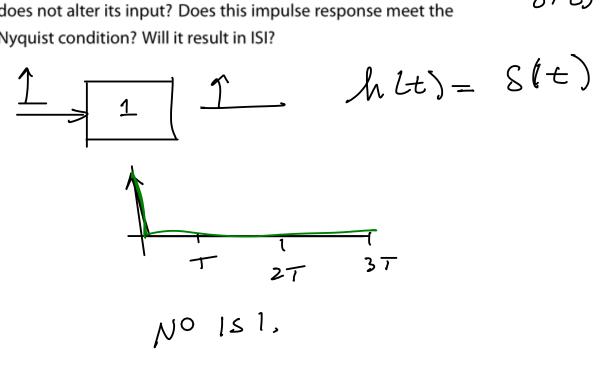
Exercise 1: Draw a square pulse of duration *T*. Draw the pulse after it has passed through a linear low-pass channel that results in rise and fall times of T/3. Draw the output for an input

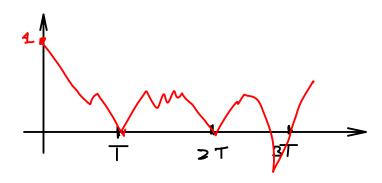


Exercise 2: What is the impulse response of a channel that does not alter its input? Does this impulse response meet the Nyquist condition? Will it result in ISI?

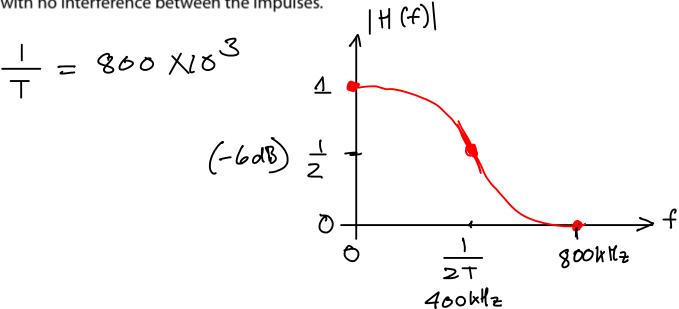




Draw the impulse response of a channel that Exercise 3: meets the Nyquist condition but is composed of straight lines.

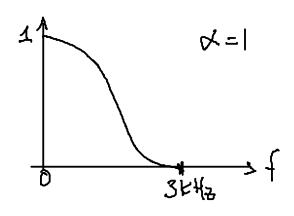


Exercise 4: Draw the magnitude of a raised-cosine transfer function that would allow transmission of impulses at a rate of 800 kHz with no interference between the impulses.



Exercise 5: Draw the impulse response of a filter than converts input impulses to pulses of duration *T*? Draw the signal after the pulse-shaping filter in the diagram above.

Exercise 6: A channel has a 3 kHz bandwidth and meets the Nyquist non-ISI conditions with $\alpha=1$. How many levels are required to transmit 24 kb/s over this channel using multi-level signalling?



$$f_b = 24 \text{ kb/s},$$

 $f_{\text{symbol}} = 3 \text{ kHz}$

$$\frac{-\text{fbit}}{\text{fsymbol}} = \frac{29}{3} = 8 \text{ bits/symbol}$$

: ned 28 = 256 | evels

$$X = 2BT - 1$$

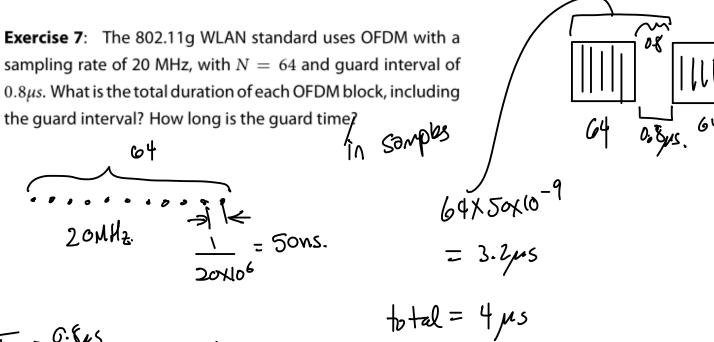
$$1 = 2.3M \cdot 1 - 1$$

$$\frac{2}{3} = \frac{3ML}{4}$$

$$45 = 3ML$$

$$\frac{1}{2} + \frac{3}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$



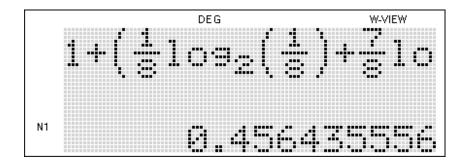
Exercise 8: What is capacity of a binary channel with a BER of
$$\log_2 \frac{1}{8} = \log_2 \frac{2}{3} = -3$$
 (assuming the same BER for 0's and 1's)? BSC
$$C = 1 + (p \log_2 p + (1-p) \log_2 (1-p))$$

$$P = \frac{1}{8}$$

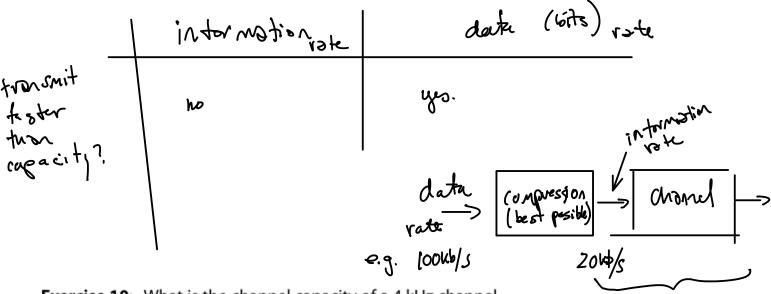
$$C = 1 + \left(\frac{1}{8} \log_2 \frac{1}{9} + \left(1 - \frac{1}{8}\right) \log_2 \left(1 - \frac{1}{8}\right)\right)$$

$$= 1 + \left(\frac{1}{8} (-3) + \frac{7}{8} \log_2 \left(\frac{7}{8}\right)\right)$$

$$= 1 + \left(\frac{-3}{8} + \frac{7}{8} (-6.2)\right) = 0.46 \text{ bits/pos}$$



Exercise 9: Can we use compression to transmit information faster than the (Shannon) capacity of a channel? To transmit data faster than capacity? Explain.



Exercise 10: What is the channel capacity of a 4 kHz channel with an SNR of 30dB?

$$C = B \log_2(1 + S)$$
= 4000 \left[\text{eg}_2(1 + 10)]
$$= 4000 \left[\text{eg}_2(1 + 10)]$$

$$= 4000 \left[\text{eg}_2(1 + 10)]
$$= 4000 \left[\text{eg}_3(1 + 10)]$$

$$= 4000 \left[\text{eg}_3(1 + 10)]
$$= 4000 \left[\text{eg}_3(1 + 10)]$$

$$= 4000 \left[\text{eg}_3(1 + 10)]
$$= 4000 \left[\text{eg}_3(1 + 10)]$$

$$= 4000 \left[\text{eg}_3(1 + 10)]
$$= 4000 \left[\text{eg}_3(1 + 10)]$$$$$$$$$$

Exercise 11: What do the Nyquist no-ISI criteria and the Shannon Capacity Theorem limit? What channel parameters determine these limits?

	Nyquist NO-181	Shannon	
What does it linit	symbol pte	in formation Die	
what does it Olipend on?	bandwidth (& symety)	dipends on dismel	< BSC -P AWAN - B, -S
Nu	ts= symbol 10te		