Lecture 4 - Channel Characteristics and Impairments **Exercise 1**: A 10 dBm signal is applied to one end of a 50 ohm co-ax cable at frequencies of 1, 10 and 100 MHz. At the other end you measure voltages of 7, 4 and 0 dBm respectively. Plot the amplitude of the transfer function of the channel formed by this cable. Show dB on the vertical axis and log of frequency on the horizontal axis. $$H(f) = \frac{V_{\sigma_{\upsilon}\tau}}{V_{i_0}}$$ | off the fiorizontal axis. | | | | 11 . | , (| | |---------------------------|---------|-----|-----|-------|--------------|-----------------------| | 4 | 10g (f) | Vou | VIN | H (+) | (aB) U(f) AR | = Vour (as) - Vin (a) | | 1 | 6 | ٦ _ | 10 | -3 | • | 2 (als) | | (0 | 1 | | 10 | -6 | H (+) | | | (00) | 2 | 0 | 10 | -10 | | | | | | ' | | I | -5 | | | | | | | | , 🛉 | X | | | | | | | -10 | | **Exercise 2**: How much *power* would a signal transmitted at the edge of the 3 dB bandwidth passband have compared to the the power it would have if transmitted at the frequency with the lowest loss? What would be the ratio of the *voltages*? What if the bandwidth was defined as the 6 dB bandwidth? Pour Pour $$\frac{P_{\text{out}}}{P_{\text{in}}} = -3 \text{ dB}$$ $$\frac{P_{\text{out}}}{P_{\text{in}}} = -3 \text{ dB}$$ $$\frac{P_{\text{out}}}{P_{\text{in}}} = -3 \text{ dB}$$ $$\frac{P_{\text{out}}}{P_{\text{out}}} **Exercise 3**: If t is a time, which happens first, t or $t - \delta$? If f(t) and $f(t - \delta)$ are the input and output of a channel with delay, which is the input and which the output? What is the delay? **Exercise 4**: If the phase changes by $\frac{\pi}{2}$ and the frequency is 1 kHz, what is the delay? If the phase at the input is $\frac{\pi}{4}$, what is the phase at the output? **Exercise 5**: A 100m transmission line has a velocity factor of 0.66. Plot the phase response of the cable over the frequency range 0 to 6 MHz. VF = ~ C **Exercise 6**: A telephone line is being used to transmit symbols at a rate of 300 symbols/second using frequencies between 800 and 1200 Hz. If the group delay must be less than 10% of the symbol period, what is the maximum allowable variation in group delay over this frequency range? group delay < 10% of Tsym = $$3.3 \text{ ms}$$. **Exercise 7**: The input to a <u>non-ideal</u> amplifier is the sum of two sine waves at frequencies of 1 and 1.1 MHz. What are the frequencies of the harmonics of these frequencies? What are the frequencies of the (positive) third-order IMD products? $$3rd$$ -order (MD: $2f_1-f_2 = 2-1.1 = 0.9$ $2f_2-f_1 = 2.2-1 = 1.2$ Nearby machinery is adding noise onto the line. The voltage of this noise signal is measured with an RMS voltmeter as 100 mVrms. The characteristic impedance of the line is 600Ω and it is terminated with that impedance. Why was an RMS voltmeter used? What is the signal power? What is the noise power? What is the SNR? Why RMS? -> noise is not sinusoidal so only pers. VM will give accuste power measurement. Vpeak = 1 V , $$V = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$ $$f_{z} = 1$$ $$f_{z} = 1, | \text{ order products}$$ $$0.9 \quad 0.9 \quad 1.1 \quad 1.2$$ S = = = 50 ≈ FaB **Exercise 9**: Would you use AC or DC coupling to measure: (a) σ , (b) μ , and (c) the RMS power? Would you measure the average or RMS power in each case? What is the RMS power of the signal x if it has a mean (DC) value of $\mu = 2$ V and $\sigma = 3$ V? (a) $$J = rms$$ voltage AC (b) $M = average$ voltage DC (c) rms power. $= 2^2 + 3^2 = 4+9 = 13$ if $R = 1$ S ("normalized in power." **Exercise 10**: What are the units of *t*? 27 Mm (5-34 **Exercise 11**: The output of a noise source has a Gaussian (normally) distributed output voltage. The (rms) output power is 20mW and the output impedance is 100Ω . What fraction of the time does the output voltage exceed 300mV? Hint: the variance (σ^2) of a signal is the same as the square of its RMS voltage. $$V = \sqrt{.02.100}$$ $$+ = \frac{N - M}{6} = \frac{0.3 - 0}{\sqrt{2}} = 6.212$$ $P = \frac{\delta^2}{R} = \frac{(V)^2}{100} = 6.020$ $$prob (x < 0.3) = P(t)$$ Midterm: next Monday @ 830 -> 1020 e 97 410 J 13 10×106 ×8 - paylod