Lecture 3 - Common Transmission Media

Exercise 1: How much does a cable's resistance increase when the gauge size increases by 6? By 3? Hint: a wire's resistance is

Exercise 2: What is the characteristic impedance of a lossless cable with an inductance of 94 nH per foot and capacitance of 17pF/ft?

$$\frac{Z_{0}}{C} = \sqrt{\frac{L}{C}} = \sqrt{\frac{94E - 9}{17E - 12}} = \sqrt{\frac{94E - 9}{17E - 12}}$$

Exercise 3: What is the characteristic impedance of UTP made from 24-gauge wire with polyethylene insulation ($\varepsilon_r = 2.2$) of 0.25mm thickness?

Exercise 4: What is the characteristic impedance of a co-ax cable with a 0.8mm diameter center conductor, 3.5mm diameter shield and foamed polyethylene between them that has a dielectric constant of 1.5?

$$\frac{60}{\sqrt{1.5}} \ln \left(\frac{3.5}{0.8} \right) \approx 72.52$$

Exercise 5: An 800 MHz signal is output from a CATV amplifier at a power level of 10dBm. What power level would you expect at the other end of a 75m run of co-ax whose loss is specified as 24dB/100m at 800 MHz? Hint: gain $G_{dB} = 10 \log_{10}(P_{out}/P_{in})$.

 $\cos = \frac{75}{100} \cdot 24 dB = 18 dB$

Exercise 6: Assuming the transmission line in the above example is properly terminated, what are the voltage and current at the input and output of the cable? Hint: $P = V^2/R$.

assuming 20 = 75 .: R=75

$$-8d8m P = V^{2}$$

$$-8 = 10 log (\frac{P}{.601})$$

$$= 0.001 \cdot 10 = 6.16 \text{ mW} P = I^{2}R$$

Exercise 7: What is the velocity factor for a cable with polyethylene insulation ($\varepsilon_r = 2.2$)? How long would it take for a signal to propagate 100m? For a cable with air dielectric?

$$VF = \frac{1}{\sqrt{2}v} = \frac{1}{\sqrt{2.2}} = 0.66$$

$$V = \frac{d}{t} = \frac{10^{2}}{3\times10^{8} \cdot 0.66}$$

$$= 0.5 \times 10^{-6}$$

$$= 500 \text{ ns.}$$

Exercise 8: If the optical signal wavelength is 1330nm what is the frequency? Note that the wavelength is specified in free space, not in the fiber.

$$\frac{\lambda}{m} = \frac{C}{s} = \frac{3 \times 10^{8} \text{ m/s}}{1.33 \times 10^{-6}} = \frac{2.3 \times 10^{14}}{1.33 \times 10^{-6}} = \frac{2.3 \times 10^{14}}{233 \times 10^{2}}$$

$$\frac{\lambda}{m} = \frac{C}{s} = \frac{3 \times 10^{8} \text{ m/s}}{1.33 \times 10^{-6}} = \frac{2.3 \times 10^{14}}{233 \times 10^{2}}$$

$$\frac{\lambda}{m} = \frac{C}{s} = \frac{3 \times 10^{8} \text{ m/s}}{1.33 \times 10^{-6}} = \frac{2.3 \times 10^{14}}{233 \times 10^{2}}$$

Exercise 9: For some types of antennas, such as reflectors, the effective aperture is closely approximated by the physical area of the antenna. What are the approximate effective aperture and gain of a 1-m diameter Ku-band (\approx 15 GHz) satellite dish?

$$\int_{1}^{1} Im \qquad \int_{1}^{1} = \frac{15 \text{ 6} \text{ Mz}}{15 \text{ Mp}} \qquad \lambda = \frac{C}{f} = \frac{3 \times 10^{8}}{15 \text{ Mp}}$$

$$\approx 2 \times 10^{-2}$$

$$Ae \approx A = \pi^{c^{2}} = \frac{\pi d^{2}}{4} \approx \frac{3}{4} \text{ m}^{2}$$

$$G = \frac{4\pi}{3^{2}} = \frac{4\pi}{(2 \times 10^{-2})^{2}} = \frac{4\pi \times \frac{\pi \times 12}{4}}{(2 \times 10^{-2})^{2}} = \frac{4\pi \times \frac{\pi \times 12}{4}}{(2 \times 10^{-2})^{2}} = \frac{24 \cdot 674.011}{24 \cdot 674.011}$$

Exercise 10: A point-to-point link uses a transmit power of 1 Watt, transmit and receive antennas with gains of 20dB and operates at 3 GHz. How much power is received by a receiver 300m away?

$$P_{T} = |W| \qquad \qquad G(B) = \frac{10 \log (6)}{6 \log (6)}$$

$$G_{T} = G_{R} = 20 dB \qquad \qquad G = \frac{20}{6 \log (6)} = \frac{20}{10} = \frac{20}{10} = \frac{20}{10} = \frac{20}{10}$$

$$f = 3 \times 10^{9} \text{ H}_{2} \qquad \qquad \lambda = \frac{C}{f} = \frac{3 \times 10^{6}}{3 \times 10^{9}} = 0.1 \text{ m}$$

$$d = 360 \text{ m}$$

$$P_{R} = P_{T} G_{T} G_{R} \left(\frac{\lambda}{4\pi d}\right)^{2} = |\cdot|0^{2} \cdot |0^{2} \left(\frac{0.1}{4\pi \cdot 300}\right)^{2}$$

$$= 7 \text{ MW}$$

Exercise 11: Rank each of twisted-pair, co-ax, optical fiber and free space media according to cost of the medium, cost of the interface, media size and immunity to interference.

	C68t nudia				
	media	inter-face	size	immunity to	`/ <i>f</i>
UTP	L	L	mdivn		_
co-ox	Μ	1 1	bryest		
oF	?	,	Small	most	
wireless	L ougst		Smellet	1008+	