## Leccture 15 - ARQ and Flow Control

**Exercise 1**: Create a table summarizing the three different types of ARQ. Include: throughput, transmitter memory, receiver memory and relative complexity.

| iver | memory and relative comp | lexity.  Throughput               | TX    | Wenan? | complexity |
|------|--------------------------|-----------------------------------|-------|--------|------------|
| _    | Stopl wait               | -5 hort delay high - long ": 1000 | fisme | ١ ?    | bω         |
|      | go-badx - N              |                                   |       |        |            |
|      | selective repeat         |                                   |       |        |            |

**Exercise 2**: A data communication system operates at 1 Mb/s and uses 10000-bit data frames and 100-bit ACK frames. What are the frame durations? What is the throughput if there is no channel delay and no errors? If the round-trip channel delay is a 0.5s (typical for satellite links)? If go-back-N ARQ is used, assuming the transmitter can store all unacknowledged frames?





**Exercise 3**: A communication system loses every 10th frame (e.g. due to periodic noise bursts). Ignoring ACK overhead, what is the throughput using go-back-N ARQ? Using Selective

ARQ? -> assuming an average of 10 unadenowledged fromes.

DOC



**Exercise 4**: Which of the above flow control methods can be used with frame-oriented protocols? On unidirectional links?

|               | W/W     | Øw             | ally ACK |
|---------------|---------|----------------|----------|
| franc         | dipends | probaby<br>Not | У        |
| cridinational | À       | N              | $\sim$   |