
ELEX 3525 : Data Communications
2015 Fall Session

Polynomials in GF(2) and CRCs

is lecture covers arithmetic with polynomials that have coefficients from GF(2). ese operations are the basis of many
useful telecommunications functions including computation of cyclic redundancy checks (CRCs).
Aer this lecture you should be able to: represent a sequence of bits as a polynomial with coefficients from GF(2), compute
the result of multiplying a polynomial by xn, compute the result of dividing two polynomials, compute the value of a CRC
given the message and generator polynomials, and determine if a CRC computation indicates an error has occurred.

GF(2)

A Galois field, denoted as GF(q), is a set of integers
and two operations that have certain properties. One
of the properties is closure – the result of any opera-
tion on two elements of the field is also in the field.

For example, GF() includes two integers (0 and
1) and the addition and multiplication operations are
defined as addition and multiplication with the result
taken modulo-2.
Exercise 1: Write the addition, subtraction andmultiplication

tables for GF(). What logic function can be used to imple-

ment modulo-2 addition? Modulo-2 multiplication?

Exercise 2: What are the possible results if we used values 0

and 1 but the regular definitions of addition and multiplica-

tion? Would this be a field?

Representing Codewords as Polynomials

us far we’ve represented codewords as sequences
of bits. We can also represent codewords as polyno-
mials with coefficients from GF(). For example, the
polynomial:

x + x + x + x = x + x + 

can be used to represent the codeword 1011.
Exercise 3: What is the polynomial representation of the

codeword 01101?

Polynomials are used to describe codes because
many properties of codes can be derived from the
mathematical properties of polynomials.

Note that it is the coefficients of the polynomial
that are important. e polynomial itself is never
evaluated and the variable x that appears in these
polynomials is just a dummy variable. ese polyno-
mials can thus also be viewed as binary numbers or

bit strings where the order of each term indicates the
bit position.

Polynomial Arithmetic

We can add, subtract, multiply and divide poly-
nomials with coefficients in GF(2). ese opera-
tions are the basis for many useful communication-
related functions including convolutional codes for
FEC (Forward Error Correction), CRCs (Cyclic Re-
dundancy Checks), and PRBS (Pseudo-Random Bit
Sequence) generators.

Exercise 4: What is the result of multiplying x +  by x + x
if the coefficients are regular integers? If the coefficients are

values in GF()?

Digital Implementation of Polynomial Arith-
metic

Arithmetic on polynomials with GF() coefficients
can be implemented with simple digital logic circuits.
Flip-flops, organized as shi registers, store the val-
ues of the coefficients and XOR and AND gates are
used to compute modulo-2 addition and multiplica-
tion. ebits corresponding to codeword(s) are input
and output sequentially, bit by bit, into the polyno-
mial arithmetic circuits.

It’s simpler to do arithmetic using polynomials in
GF(2) than using regular integers because we do not
need to compute carries when computing results.

Cyclic Redundancy Checks

A Cyclic Redundancy Check (CRC) code is used to
detect errors in a sequence of k data bits. A “code-
word” of n bits is transmited for each k bits. e

lec9.tex 1



length of the CRC is thus n − k. e algorithm used
to compute the CRC is as follows:

e data to be transmitted, treated as a polynomial,
is multiplied by xn−k which appends n − k zero bits.
is new polynomial, M(x), is divided by a genera-
tor polynomial, G(x). e result is a quotient and a
remainder:

M(x)
G(x)

= Q(x) + R(x)

We then replace the last n − k bits of M(x) with
R(x). is is equivalent to adding (or subtracting)
R(x) from M(x). is ensures that the new polyno-
mial will be divisible by G(x).

e receiver carries out the same polynomial divi-
sion operation on the combination of themessage bits
andCRC. If the remainder is not zero then at least one
of the bits must have changed and an error has been
detected.

Computing the CRC

Computing the CRC requires polynomial division.
e process involves repeated subtraction of the gen-
erator polynomial from themessage polynomial. Un-
like regular division, to compute the CRC we only
need to compute the remainder.
Exercise 5: If the generator polynomial is G(x) = x + x + 
and the data to be protected is 1001, what are n− k,M(x) and
the CRC? Check your result. Invert the last bit of the CRC and

compute the remainder again.

A circuit to perform the division of the polynomi-
als can be implemented using a shi register (SR) that
holds the result of the intermediate remainder aer
each subtraction. e shi register only has to hold
(n− k) bits.

e diagram above1 shows a circuit that performs
polynomial division. e squares represent flip-flops
in the SR with the most significant bit of the inter-
mediate remainder in the right-most bit. e circles
labeled gi represent either a connection or no connec-
tion depending on the coefficient of G(x). e circles
with a plus represent modulo-2 addition (or subtrac-
tion) implemented using XOR gates. e input la-
belled a is the message.

e SR bits are initialized to zero so that the first
n − k (data) bits are loaded into the SR unchanged.
At each subsequent step in the division the generator
polynomial (represented by the presence or absence
of the connections labelled gi) is or isn’t subtracted
by the xor gates from the intermediate remainder in
the SR depending on the value of the most signifi-
cant bit of the quotient (rightmost bit of the SR). e
next input bit is also appended to the intermediate re-
mainder. At the end of the process the shi register
holds the final remainder R(x) which is appended to
the message as the CRC.

ere are alternative CRC generator implementa-
tions that avoid the n − k-bit delay associated with
initializing the SR.

Checking the CRC

At the receiver the same circuit can be used to divide
the received message and the appended remainder
polynomial by the generator polynomial. If the re-
mainder is zero then the received polynomialmust be
amultiple of the generator polynomial. is is always
the case when we subtract the remainder R(x) from
the message polynomial. erefore if the remainder

1From Error Control Systems by S. B. Wicker.

2



in the SR is non-zero then there must have been an
error.

CRC Error Detection Performance

e ability of the CRC to detect an error depends on
the type of error.

If the errors happen in a burst then a CRC com-
puted using a properly-chosen generator polynomial
of length n − k is guaranteed to detect all burst of
length n−k or less andwill detectmany longer bursts.

If the received bits are completely random then the
probability of not detecting an error is the probabil-
ity that a random sequence of n− k bits matches the
required checksum.
Exercise6: What is theprobability that a randomly-chosen set

of n− k parity bits will match the correct parity bits for a given

codeword? Assuming random data, what is the undetected

error probability for a 16-bit CRC? For a 32-bit CRC? How long a

CRC is required to guarantee detection of all single-bit errors?

Standard CRC Generator Polynomials

ere are several CRC generator polynomials in com-
mon use. e most common lengths are 16 and 32
bits since these aremultiples of 8 bits. All(?) IEEE 802
standards use the same 32-bit CRC polynomial typi-
cally called “CRC-32”. e ITU has defined a 16-bit
CRC generator polynomial (“CRC-16-CCITT”) that
is also used in various standards.

3


