
ELEX 3525 : Data Communications
2015 Fall Session

PN Sequences and Scramblers

Aer this lecture you should be able to: distinguish between random and pseudo-random signals, classify signals as PN,
PRBS, and/or ML PRBS signals according to their quantization, periodicity, mean value and maximum run lengths, draw
the schematic of a LFSR ML PRBS generator, explain two reasons why scrambling may be desirable, select between scram-
bling and encryption based on the need for secrecy, select between additive andmultiplicative scramblers based on the avail-
ability of framing information, explain the error patterns resulting from erroneous input to a self-synchronizing scrambler,
and implement (draw schematic of) additive scramblers and self-synchronizing multiplicative scramblers.

Random and Pseudo-Random Signals

Unpredictable signals are said to be “random.” An
example is the thermal noise generated by a resistor.
Some statistics of the noise waveform, such as the av-
erage voltage (e.g. 0), the power (given by kTBF), and
the spectrum (e.g. a constant) may be known. But we
can’t predict the future values of the waveform.

It is sometimes useful to generate waveforms that
appear random but whose values are predictable.
ese types of signals are called “pseudo-random”
signals. When these signals are noise-like they are
called pseudo-noise (PN) signals.

A pseudo-random bit sequence (PRBS) is a two-
valued (0,1) pseudo-random signal. PN and PRBS
signals have many important applications in com-
munications systems. In this lecture we will study
the properties of a type of PRBS called a maximal-
length (ML) sequence, learn how to generate these se-
quences and about one of their applications – “scram-
bling.” Other applications include spread-spectrum
systems and the generation of test signals.

So we have the following taxonomy of random sig-
nals:

VERHSQ TWIYHS�VERHSQ

46&7�����
 42��GSRXMRYSYW


10�46&7

Generating aML PRBS

AML PRBS can be implemented using a shi register
whose input is the modulo-2 sum of other taps.

D Q D Q D QD Q

clock

is is known as a linear-feedback shi register
(LFSR) generator. ere are published tables showing
the LFSR tap connections that result in a ML PRBS
generator.

If the contents of the shi register ever become all
zero then all future values will be zero. is is why
the generator has only K −  states – the state corre-
sponding to all zeros is not allowed.

Properties of a ML PRBS

ML PRBS sequences, sometimes called m-sequences,
have a number of interesting properties including:

• the sequence is called maximum-length because
the sequence has a period of K −  where K is
the number of bits of state in the generator (shi
register stages). is is one less than the maxi-
mum number of states of a K-bit counter.

• the sequence has exactly K− ones and K− − 
zeros

• there is 1 run of K-1 1’s, 2 runs of K-2 1’s andK-2
0’s, 3 runs of K-3 1’s, ...

• the generator runs through every possible set of
states except all-zero,

lec10.tex 1



• the sequence is approximately orthogonal to any
shi of itself

Exercise 1: How many flip-flops would be required to gen-

erate a ML PRBS of period 16383? How many ones would the

sequence have? What is the longest sequence of 0’s?

Scrambling

Much real-world data contains repetitive compo-
nents. Examples include a digitized image with lines
that have the same color, video that stays constant
from one frame to the next, or repeated values in a
file.

Two possible problems are introduced by this non-
random data:

• the periodic components of the signal can result
in peaks in the spectrum of the transmitted sig-
nal that have larger than average power. ese
strong discrete frequency components can cause
interference to wireless devices.

• long sequences of certain values may result in a
signal that may not have enough transitions to
allow for clock recovery.

To solve these problems most communication sys-
tems use “scramblers” to remove periodicities or long
constant sequences in the data. Two types of scram-
blers as described below.

It is important to understand that a scrambler does
not provide secrecy (encryption).
Exercise 2: Why not?

Frame-Synchronous Scramblers

e simplest type of scrambler consists of aML PRBS
generator whose output is exclusive-OR’ed with the
data. ese types of scramblers are called “addi-
tive” scramblers because the PN sequence is added,
modulo-2, to the data.

�10�46&7
+IRIVEXSV

WGVEQFPIH
���HEXE

HEXE

PSEH

Since the ML sequence needs to be synchronized
between the transmitter and receiver, this type of
scrambler is only practical for systems that have a
frame structure. e state of the ML PRBS generator
can be set to a specific value at the start of each frame.
is value can be either a fixed value for every frame
or it can be a value derived from the frame’s preamble
or header.

Self-Synchronizing Scramblers

Some protocols don’t use framing and operate on a
continuous sequence of bits. A scrambler for such a
system needs to synchronize the descrambler to the
scrambler without any external information so it can
recover from a loss of synchronization.

Self-synchronizing scramblers are sometimes
called multiplicative scramblers because scrambling
and descrambling are implemented using polynomial
division and multiplication. e scrambled output,
S(x), is generated at the transmitter by dividing the
data by a generator polynomial G(x):

S(x) =
M(x)
G(x)

and transmitting the quotient (the remainder is ig-
nored). e receiver de-scrambles the scrambled sig-
nal by multiplying by G(x):

M(x) = S(x)G(x)

As shown in a previous lecture we can implement
polynomial division and multiplication using shi
registers and xor gates.

For example, the ITU-T V.34 modem specifi-
cation defines a self-synchronizing scrambler for
calling mode that uses the generating polynomial:
GPC(x) = + x− + x− (negative powers of x are
used to indicate thatmore negative orders correspond
to more-delayed bits). e scrambler and descram-
bler can be implemented as shown in the following
figures (the numbers in boxes are delays, not polyno-
mial order):

2



Oneproblemwith self-synchronizing scramblers is
that an error in the received data pattern can result
in multiple errors in the de-scrambled data. is is
called error propagation.
Exercise 3: How many errors will appear in the output of a

V.34 descrambler if there is one input error?

Certain input sequences could set the scrambler
state to zero and terminate the scrambling. Practical
scramblers and descramblers detect when this hap-
pens and invert the next bit.

PRBS Test Sequences

We can test a communication system by transmitting
a PRBS sequence over the channel and comparing the
received sequence to a locally-generated copy. Since
the hardware to generate a very longML-PRBS is very
simple, it is practical to use long sequences for testing.

One problem that arises is how to synchronize the
transmitter and receiver. is can be done by loading
the receiver PRBS generator’s shi register with any
K received bits. As long as there were no errors in
these K bits then from that point on the transmit and
receive generators will generate the same sequences:

VYR

VIW]RGLVSRM^I
GLERRIP8< 6<

If the receiver ever becomes un-synchronized with
the transmitter the error rate will become very high.
When this is detected at the receiver the local PRBS
generator can resynchronize as above.
Exercise 4: In the diagram above, what two signals would the

receiver compare to detect errors?

3


