
ELEX 3525 : Data Communications
2015 Fall Session

FPGA-Based Error Rate Measurement

Introduction1

A Field-Programmable Gate Array (FPGA) is a logic
device that can be programmed to implement any de-
sired digital logic function.

FPGAs are useful for implementing small-volume
products and to set up test fixtures, particularly when
the signal frequencies are too high to process signals
in soware.

Logic analyzers are instruments that recognize pat-
terns in digital signals and capture and display them.
FPGAs can be configured to include logic analyzer
features. is approach is oenmore flexible than us-
ing stand-alone logic analyzers.

In this lab you will use an FPGA to implement a
circuit that measures the error rate of data transmit-
ted over a channel. e test circuit on the FPGA gen-
erates and outputs random data at 100 kbps. It com-
pares the received data with the transmitted data and
counts the number of errors and number of transmit-
ted bits. e ratio is the bit error rate (BER). e val-
ues of the two counters will be read using a logic an-
alyzer embedded in the FPGA design.

You will also build a simple circuit that adds addi-
tive white Gaussian noise (AWGN) to the transmit-
ted data (txdata). e Arbitrary Waveform Genera-
tor (AWG) outputs samples of pre-computed AWGN
plus a DC offset voltage. e comparator generates
the received data signal (rxdata):

%;+

*4+%

4'

97&

GSQTEVEXSV
RSMWI��
SJJWIX

V\HEXE

X\HEXE

1Revised November 5, 2015.

e schmatic of the comparator circuit is shown
below:

�O�

�O�

�O�

�:�

��
��

��

��

�

X\HEXE
V\HEXE

RSMWI�
SJJWIX

�O�

01���
�2���� �

�

e noise plus a DC offset is applied to the non-
inverting input. e 1 kΩ current-limiting resitor
and the 1N5820 Schottky diode prevent the input go-
ing more negative than about -0.3 V and so prevent
damage to the comparator.

e 0 to 3.3 V txdata signal is applied to the invert-
ing input through a voltage divider. is keeps the
inverting input in the range of approximately 0–1 V
where the comparator can provide a valid output re-
gardless of the level at the non-inverting input (see
datasheet for details).

e comparator has an open-collector output so a
pull-up is required on the output.

e AWG is configured to add a DC offset of ap-
proximately 0.5 V so that V+ = . + N where N
is the noise voltage. V− is a data signal (txdata) of
approximately 0-1 V. e comparator output will be
high when V+ > V− or whenN+ . >txdata and
low when V+ < V− or when N + . <txdata. In
the first case an error will happen when txdata is +1
and N > .. In the second case an error will hap-
pen when txdata is 0 and N < −.. For zero-mean
Gaussian noise both probabilities are the same. us
the BER can be predicted as the probability that the
noise is less than the threshold value of ≈ −..

Note that the data also appears inverted at the out-
put (txdata=1 results in a low output). However, the
FGPA can easily invert rxdata.

In the lab youwill measure the BER for various lev-
els of noise power (standard deviation) and compare
the results to predicted values.

lab7.tex 1



You will use an Altera DE-0 Nano FPGA board
that includes a Cyclone IV FPGA, 8 LEDs, two push-
buttons and two connectors with 40 I/O pins each.

e FPGA is configured with a 100 kHz clock driv-
ing a pseudo-random bit sequence (PRBS) generator
and two counters. One counter counts up on every
clock cycle, the other counts up only when the re-
ceived data does not match the transmitted data (the
XOR gate does the comparison).

Figure 1 shows the schematic of the FPGA. It in-
cludes a 100 kHz clock generator, a pseudo-random
bit sequencer (PRBS) generator and the bit and error
counters.

e FPGAboard has two pushbuttons. One is used
to reset both counters and the PRBS generator. e
other is used as a trigger by the embedded logic ana-
lyzer. e comparator power is supplied by 3.3VDC
from the FPGA board. e FPGA is not tolerant
of 5V signals so external power supplies must not
be used (50% of your lab mark will be deducted if
you connect or turn on a power supply during this
lab!). e FPGA is programmed over a JTAG inter-
face plugged into one of the PC’s USB ports. e
JTAG interface is also used for the logic analyzer in-
terface.

Threshold Comparator Circuit

You can substitute any comparator that operates at
3.3V and has an open-collector output (for exam-
ple the LM3302 which has the same pin-out as the
LM339). e pin-out of these comparators is:

1
2
3
4
5
6
7

14
13
12
11
10

9
8

1OUT
2OUT

V CC
2IN−
2IN+
1IN−
1IN+

3OUT
4OUT
GND
4IN+
4IN−
3IN+
3IN−

D OR N PACKAGE
(TOP VIEW)

e following diagram shows how the circuit can
be assembled on a prototyping board and connec-
tions made to a cable that connects to the FPGA
board. e red stripe (on the le of the photograph
below) marks the side of the ribbon cable connected
to pin 1. e leads of the Schottky diode are too large

to fit in the breadboard and must be cut down. e
white band marks the cathode.

FPGA Board

e connections to the FPGA are made through a
supplied 40-pin ribbon cable plugged into the GPIO0
connector on the FPGA board (see photo below).

Obtain 3.3V from the ribbon cable connector pin
29 and ground frompin 30 for the comparator circuit.

e following photograph shows the LEDs and
pushbuttons on the board:

97&�'SRRIGXSV 0)(?�A0)(?�A /)=?�A��XVMKKIV


/)=?�A��VIWIX
+4-3��4MR��

You will use the reset pushbutton (labelled KEY1
on the board) to reset the error counter. You will use
the trigger pushbutton to trigger the logic analyzer
and display the currrent bit and error counts.

2



 

 

OR'ed output avoids registers being optimized away.

reset

bitclock

reset

reset

sr[9]

bitclock

bitcnt[31..0]

trigger

sr[30..1],txdata

txdata

txdata

bitclock

reset

errcnt[31..0]
bitclock

error

rxdata

txdata

rxdataN

bitcnt[31..0],errcnt[31..0]

VCC
CLOCK_50 INPUT

VCC
KEY[0] INPUT

VCC
KEY[1] INPUT

VCC
GPIO_0_IN[0] INPUT

LED[0]OUTPUT

LED[1]OUTPUT

LED[2]OUTPUT

LED[3]OUTPUT

LED[4]OUTPUT

GPIO_0[32]OUTPUT

LED[5]OUTPUT

left shift
sset

clock

shiftin
q[30..0]

shiftregister

inst2XOR

inst6

NOT

inst7

up countersclr

clock

cnt_en

q[31..0]

bitcounter

bits

up countersclr

clock

cnt_en

q[31..0]

bitcounter

errors

VCC

XOR

inst5

NOT

inst4

Cyclone IV E

inclk0 frequency: 50.000 MHz

Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)

c0 1/500 0.00 50.00

inclk0 c0

locked

bitclock

inst

data[][] result[]

LPM_OR

inst1

PIN_R8

PIN_J15

PIN_E1

PIN_A8

PIN_A15

PIN_A13

PIN_B13

PIN_A11

PIN_D1

PIN_D12

PIN_F3

LPM_WIDTH 1

LPM_SIZE 64

Parameter Value

Figure 1: Bit and Error Counters.

3



efollowing diagram labels the connection points
on the ribbon cable connector with pin 1 (red con-
ductor) on top. e letter-number pairs are the
row and column respectively on the 256-pin (16×16)
BGA (ball-grid array) FPGA package; numbers be-
ginning with zero (0) are signal names used in the
the DE-0 documentation (prefixed with GPIO_), the
other numbers are the 40-pin “header” connector
numbers. For example, the signal on FPGA pin A2
has signal name GPIO_02 and is on pin 5 of the con-
nector (third pin from the top on the right side).

D3 00 2 1 0_IN0 A8
C3 01 4 3 0_IN1 B8
A3 03 6 5 02 A2
B4 05 8 7 04 B3
B5 07 10 9 06 A4

GND – 12 11 – 5V
D5 09 14 13 08 A5
A6 011 16 15 010 B6
D6 013 18 17 012 B7
C6 015 20 19 014 A7
E6 017 22 21 016 C8
D8 019 24 23 018 E7
F8 021 26 25 020 E8
E9 023 28 27 022 F9

GND – 30 29 – 3.3V
D9 025 32 31 024 C9
E10 027 34 33 026 E11
B11 029 36 35 028 C11
D11 031 38 37 030 A12
B12 033 40 39 032 D12

FPGA Configuration

e procedure to design the error rate measurement
circuit and configure the FPGAusing the (free)Quar-
tus II soware is as follows:

• start Quartus II (64 bit)

• File -> New -> New Quartus II Project

• create or select a folder, project name (e.g.
lab7), the Cyclone IV E Family, and the
EP4CE22F17C6 device, and leave other settings
set to defaults

• select Assignments -> Import Assignments ->
DE0-Nano.qsf to assign FPGA pin numbers to

the signals on the DE0-Nano board. is file is
available on the course web site

• Remove the assignment that sets the drive lev-
els of all output pins to “Minimum”. Under As-
signments ->Assignment Editor, Sort on theAs-
signment Name column to find the line that sets
“Current Strenght” for all pins (“*”) to “Mini-
mum Current”. is setting should be disabled
(click on the“Enabled” column and select “No”)
or deleted (right-click on the line and select
“Delete”).

• File -> New -> Block Diagram/Schematic File

• if necessary, select View -> Utility Windows ->
IP Catalog to show the list of configurable intel-
lectual property (IP) blocks

• select Library -> Basic Functions -> Arithmetic
-> LPM_COUNTER

• define the counter component by specifying a
name (e.g. bitcounter), VHDL source, 32-bit
up-only counter with count enable and syn-
chronous clear inputs. Enable generation of a
symbol (.bsf) file.

• select Library -> Basic Functions -> Miscella-
neous -> LPM_SHIFTREG

• define the shi register by specifying a name
(e.g. shiregister), 31 bits, le shi, [parallel]
Data output and a Serial shi data input. Add
a synchronous set input and enable generation
of a symbol file.

• similarly, define a clock component by selecting
Library -> Basic Functions -> Clocks; PLLs and
Resets -> PLL -> ALTPLL

• specify a name (e.g. clock), a 50 MHz input,
locked and a 100 kHz clock outputs (c0), and no
additional inputs or outputs. As before, generate
a symbol file.

• use the “Symbol Tool” and insert two counters,
one clock and one shi register from the Project
library as shown in the schematic. Give each
component instance a unique label (e.g. bits, er-
rors, clock).

4



• use the “Symbol Tool” and insert the required
xor gates (one for LFSR generator and one
for error detection), inverters (not), one Vcc
constant (to enable the bit counter), and one
64-input OR gate (Megafunctions -> gates ->
lpm_or) as shown in the schematic. Hints: Use
the search box to find components. It is oen eas-
ier to give signals names (right-click -> Properties)
rather than connecting them. Assign names to
the bit and error count signals so the logic ana-
lyzer can select them.

• use the “Pin Tool” to insert the output and input
ports labeled with the exact pin names shown
in the schematic2 Although the pushbutton and
counter outputs are only used by the logic ana-
lyzer, they must drive output pins so that they
are not optimized away. e error and trigger
pushbuttons also drive two LEDs to verify that
the FPGA has been properly configured.

• use the “Bus”, “Node” and “Selection” tools
to connect the components as shown in the
schematic. Note that the bus pin numbers in the
schematic below should be [31..0].

• click on the “Start Compilation” icon. Correct
any errors and recompile as necessary.

• connect the FPGA to the PC’s USB port and se-
lect Tools -> Signal Tap II Logic Analyzer

• under JTAG Chain Configuration -> Setup se-
lect USB Blaster

• under SOF select the correct .sof (FPGA serial
programming) file in the output_files folder

• click on the download (“Program Device”) icon
tomake sure the device is recognized and can be
programmed.

• under Signal Configuration use the node
finder to list all pins using the SignalTapII:pre-
synthesis filter and add the bitclock as the
clock

2Signal names must match the symbol names in the DE0-
Nano settings file or else they will not be connected to the correct
FPGA pins.

• in the logic analyzer window double-click in
the indicated area to add signals. As before,
list the pins and add the GPIO_0[32] (txdata),
GPIO_0_IN[0] (rxdata), KEY[0] (trigger) and
KEY[1] (reset) pins to the list of signals being
monitored in the Setup tab. Add the bit and er-
ror count signals.

• right-click on the trigger condition for KEY[0]
(trigger) and select a falling edge

• recompile and reprogram the FPGA

• click on “Autorun Analysis” to start the logic an-
alyzer

• the logic analyzer should display the error and
bit counts in the Data tab each time you press
on the trigger button

• you can change the display format to unsigned
decimal to make it easier to calculate the error
rates.

• check the bit error rate: if the input and output
are not connected it should be 50% (why?); if
connected it should be 100% because of the in-
verter on the data input

Data Analysis

e oscilloscope and DMM can be used to measure
the average data voltage (which should correspond to
the threshold voltage) and the noise RMS voltage at
the comparator inputs. RMS voltages (standard devi-
ations) must be measured using AC coupling and av-
erage voltages (threshold voltage) usingDC coupling.
From these the BER can be predicted. e logic an-
alyzer can be used to read the bit and error counter
values and their ratio is the measured BER. e pre-
dicted and measured BER values can then be plotted
against each other for a range of SNR values. When
the BER in log units is plotted against the SNR in dB
the result is the familiar “waterfall” curve showing a
rapid reduction in BER with increasing SNR.

Procedure

Use Quartus II to create the design shown in Figure
1. Check that you can program the FPGA and that

5



pushing the trigger and reset buttons give you the ex-
pected results in the logic analyzer display.

Build the comparator circuit and connect it to
the FGPA board using the supplied ribbon cable.
Connect the comparator to the AWG. Check that
the comparator output responds as expected as you
change the threshold voltage. Check that the error
count as displayed by the logic analyzer responds as
expected.

Generate a .RAF file for the AWGusing theMatlab
code supplied on the course web site (run the com-
mand berlabnoisegen to generate awgn.raf). Set
the AWG for Arb operation and load the .RAF file.
Select SRate (sample rate) mode and set the sample
rate to 100 kHz. Set the offset to the average data volt-
age (threshold).

Use the ’scope and DMM to measure the average
and RMS voltages at the two comparator pins and use
the logic analyzer to measure the BER.

Record the threshold voltage, noise RMS voltage,
error and bit counts and predicted andmeasured BER
in a spreadsheet. In your spreadsheet you can use the
erfc() function to compute the predicted error rate:

P(x < t) =



(
 + erf(

t√

)

)

Lab Report

Submit the usual identification information and a re-
port in PDF format containing the following:

• your FPGA block diagram (schematic)

• a plot of the first 200 samples of your noise wave-
form:

• a screen capture showing the signals on the two
comparator inputs (note the measurements are
made with AC coupling to measure the noise
standard deviation and DC coupling to measure
the signal mean):

• a table from your spreadsheet showing the cal-
culation of the predicted and measured BER.
e BER values should range from about −

to about −. For example:

• a plot showing both predicted and measured
BER formatted as follows:

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

5.0 7.0 9.0 11.0 13.0

B
it

 E
rr

o
r 

R
a

te

SNR (dB)

BER vs SNR

predicted

measured

6


