
Lecture 5 - Data Transmission over Band-Limited Channels

Exercise 1: Draw the (real portion of) a raised-cosine transfer function that would allow transmission of impulses at a rate of 800 kHz with no interference between the impulses.

$$\int_{\text{Symbol}} = 800 \text{ kHz} \\
= \frac{1}{800 \text{ kHz}} \\
= 1.25 \mu \text{s},$$

Exercise 2: What is the impulse response of a filter than converts input impulses to pulses of duration T? What is the shape of the frequency response of this filter? *Hint: the Fourier transform of a pulse of duration* T *is* $\frac{sin(\pi T)}{\pi T}$. What is the "bandwidth" of this filter (when is it first zero)? How does this compare to the "bandwidth" of the raised-cosine filter above?

Exercise 3:	What is the possible range of values of α ?
Exercise 4:	Could equalization be done at the receiver only?
At the trans	mitter only? Why or why not?

Exercise 5: The 802.11g WLAN standard uses OFDM with a sampling rate of 20 MHz, with N=64 and guard interval of $0.8\mu s$. What is the total duration of each OFDM block, including the guard interval? How many guard samples are used?

Exercise 6: What is the channel capacity of a 3 kHz channel with an SNR of 20dB?

$$C = B \log_2(1 + \frac{s}{N}) \quad B = 3kH_Z$$

$$5NR = 20 dB.$$

$$= 3 \times 10^3 \log_2(1 + 100) \quad \log_2 64 = 6$$

$$\approx 3 \times 10^3 \times 6.5$$

$$\approx 19.5 \quad kb/s$$

$$20 = 10 \log \frac{s}{N}$$

$$\frac{s}{N} = 10^{\frac{20}{10}} = 100$$

$$\log_a b = \frac{\log_b b}{\log_a b}$$

$$2^3 = 8$$

$$\log_2 8 = 3$$

Exercise 7: What are some differences between the signalling rate limit imposed by the Nyquist no-ISI criteria and the Shannon Capacity Theorem?