Lecture 2 - Transmission Lines

the gauge size increases by 6? By 3? Hint: a wire's resistance is proportional to its cross-sectional area.

$$A = \pi r^2$$

gauge	dianeter	area	resistonæ
+ 6	÷ 2	÷ 4	ने में
	×支	\ ५	×4
+3	<u>÷</u> √2	÷ 2	÷ ½
	X 1/2	× ½	× 2

Exercise 2: What is the characteristic impedance of a lossless cable with an inductance of 94 nH per foot and capacitance of 17pF/ft?

$$L = 94 \text{ nH/H} 94 \times 10^{-9}$$

$$C = 17 \text{ pF/H} 17 \times 10^{-12}$$

$$= \sqrt{\frac{94 \times 10^{-9}}{17 \times 10^{-12}}} \approx \sqrt{\frac{100}{20}} \times 10^{-3} = \sqrt{\frac{5000}{2000}}$$

$$\approx 70 \Omega$$

Exercise 3: What is the characteristic impedance of UTP made from 24-gauge wire with polyethylene insulation ($\epsilon_r=2.2$) of 0.25mm thickness?

 $Z_0 \approx \frac{120}{\sqrt{\epsilon_r}} \ln \left(\frac{2S}{D} \right)$

$$= \frac{120}{\sqrt{2.2}} lm \left(\frac{2}{0.5}\right)$$
= 100 lm (4)

2 10b (112)

Exercise 4: What is the characteristic impedance of a co-ax cable with a 0.8mm diameter center conductor, 3.5mm diameter shield and foamed polyethylene between them that has a dielectric constant of 1.5?

Exercise 5: An 800 MHz signal is output from a CATV amplifier at a power level of 10dBm. What power level would you expect at the other end of a 75m run of co-ax whose loss is specified as 24dB/100m at 800 MHz?

$$|OdBm = |O| \log \left(\frac{P}{Imw}\right)$$

$$| = \log \left(\frac{P}{Imw}\right)$$

$$|O| = \frac{P}{Imw}$$

$$|O| = \frac{P}{Imw}$$

$$|O| = \frac{P}{Imw}$$

$$B = \log_{18} \left(\frac{P_1}{P_2} \right)$$

$$1055 = 18dB$$

power level = $10dBm - 18dB$

= $-8 dBm$

= $100 \left(\frac{-8}{10}\right) \implies \approx 0.1 mW$

Exercise 6: What is the velocity factor for a cable with polyethylene insulation ($\epsilon_r=2.2$)? How long would it take for a signal to propagate 100m? For a cable with air dielectric?

$$VF = \frac{1}{\sqrt{\epsilon_r}} = \frac{1}{\sqrt{2.2}} = 0.66$$

$$V = c \cdot VF = 3 \times 10^8 \times 0.66 \text{ m/s}.$$

$$V = \frac{d}{d} + \frac{d}{d}$$

$$-16 = 10 \log \left(\frac{P_i}{i}\right)$$

$$-1 = \log \left(\frac{P_i}{i}\right)$$

$$P_i = 10^{-1} = 0. \mid \omega W$$

Exercise 7: If the optical signal wavelength is 1330nm what is the frequency?

$$7 = 1330 \times 10^{-9}$$

$$f = \frac{c}{\lambda} = \frac{3 \times 10^8}{1.3 \times 10^{-6}} = 2.3 \times 10^{14}$$

$$226 \times 10^{12} \text{ Hz}$$

$$222 \text{ THz}$$

Exercise 8: A point-to-point link uses a transmit power of 1 Watt, transmit and receive antennas with gains of 20dB and operates at 3 GHz. How much power is received by a receiver 300m away?

$$P_{R} = P_{T} G_{T} G_{R} \left(\frac{\lambda}{4\pi d} \right)^{2}$$

$$= | \times 10^{2} \times 10^{2} \left(\frac{0.1}{4\pi .300} \right)^{2}$$

$$= | 0^{4} \left(\frac{0^{-1}}{3 \times 10^{3}} \right)^{2}$$

$$= 10^{4} \frac{10^{-2}}{10^{7}} = 10^{-5} \approx 10 \,\mu\text{W}$$

$$(\frac{1}{2}, \mu)$$

$$\frac{d=300m}{G_{R}=20dB}$$

$$\int_{R} = 20dB$$

$$\int_{R} = 3GH_{E}$$

$$\lambda = C/f$$

$$\lambda = \frac{3\chi/0^{8}}{3\chi/0^{9}} = 0.1 \text{ m}$$

$$\frac{P_{1}}{P_{1}} = 100$$

Exercise 9: Rank each of twisted-pair, co-ax, optical fiber and free space media according to cost of the medium, cost of the interface, media size and immunity to interference.

	Cost of medium	cost of interfere	mediq SiZe	interference	Capo a ty through put bendevidth
twisted pair	₽	\$	medium	L	۱.
co-ax	\$\$	\$	- hez cha a +	Μ	Μ
optial fiber	\$\$\$	\$ \$ \$	t palloma	Ħ	#
winles s	O	+ \$\$\$	ð	المحمد الــــــ	M ?