Lecture 14 - ARQ and Flow Control

Exercise 1: Create a table summarizing the different types of ARQ. Include: throughput, transmitter memory, receiver memory and relative complexity.

	stop & wait	go back N	Selective repeat
throughput with delay >	10 W	8009	good
with errors	—	_	better
complexity	simplest	←→	most complex
transmitter memory	1	as many sent during	< some
wemord	0,1	time out duration	enough to reassemble pockts in order

Exercise 2: A data communication system operates at 1 Mb/s and uses 10000-bit data frames and 100-bit ACK frames. What are the frame durations? What is the throughput if there is no channel delay and no errors? If the round-trip channel delay is a 0.5s (typical for satellite links)? If go-back-N ARQ is used, assuming the transmitter can store 200 unacknowledged frames?

Exercise 3: A communication system loses every 10th frame (e.g. due to periodic noise bursts). Ignoring ACK overhead, what is the throughput using go-back-N ARQ? Using Selective ARQ?

Exercise 4: Which of the above flow control methods can be used with frame-oriented protocols? On unidirectional links?