ELEX 3525 - Lecture 1

Exercise 1: For each of the following digital communication services identify the source, sink and the channel(s) involved: the Ethernet connection between a computer and a router; a cell phone call; watching a YouTube video at home.

	SOUF CE	chanel	sink
ethernet	asmouter	cable	router
cell phone call	cell phase	fre space	other person
You Tube Video	gerver	various	er hispar

Exercise 2: What features of speech and video waveforms might result in variable bit rates when these sources are compressed?

- amount of redundancy such as 2 channels that are similar (stereo)
- variability in image or audio with respect to time or space

Exercise 3: What units would be used to specify error rate, delay, and delay variability? For each of the following data sources/sinks identify the relative data rate variability and the tolerance it is likely to have to errors, to the absolute delay and to the delay variability: a phone call between two people, downloading a computer program, streaming a video over a computer network. Try to guess typical values.

	(2001°C)	(sint) tolevance to errors	(sink)
	date rate variability	tolerance to errors	to levance to delay
phone call	ebr (VBR)	hogh (~%)	low (<)
tile download	? CBR (wax 19 te of	none (0)	high
streening video	Souver 15 7	high if uncompressed	7
'	rodec to VBR	high if uncompressed	•

Exercise 4: A system transmits data at a rate of 1 Mb/s in "packets" of 128 bytes. 100 of these are bytes data and the rest are overhead. The channel is shared between four users. There is a 10 μ s gap between each packet. 10% of the frames are lost due to errors. What throughput does each user see?

Throughput =
$$\frac{128 \text{ bytes}}{\text{time}}$$
 = $\frac{128 \text{ bytes}}{\text{time}}$ = $\frac{128 \text{ bytes}}{\text{time}}$ = $\frac{128 \text{ bytes}}{\text{time}}$ = $\frac{100 \text{ kg}}{\text{time}}$ = $\frac{1000 \text{ kg}}{\text{time}}$ = $\frac{100 \text{ kg}}{\text{time$

Exercise 5: Convert the decimal number 3525 to a 16-bit (two-byte) binary number. Write the sequence of bits that would be transmitted if both the bytes and bits were transmitted in little-endian order. Write the sequence of bits that would be transmitted in "network order".

Exercise 6: Write the 16-bit number above in hexadecimal notation.

Exercise 7: How many bits would be required to uniquely identify 100,000 different characters? (Hint: $2^{16} = 65536$).

17 bits would be sufficient for 128k characters but 16 would not (only allows for 64k characters)

Exercise 8: Find the ASCII codes for the *characters* '3525'. Write out the first 16 bits of the sequence that would be transmitted assuming each character is encoded using 8 bits per character

Exercise 9: The Chinese character for "Rice" (the grain) is "米" with Unicode value (code point) U+7C73. What is the UTF-8 encoding for this character?

Exercise 10: Highlight or underline each term where it is defined in these lecture notes.

